

Welcome to Cerberus

CERBERUS, n. The watch-dog of Hades, whose duty it was to guard the
entrance; everybody, sooner or later, had to go there, and nobody wanted to
carry off the entrance.
- Ambrose Bierce, The Devil’s Dictionary

Cerberus provides powerful yet simple and lightweight data validation
functionality out of the box and is designed to be easily extensible, allowing
for custom validation. It has no dependencies and is thoroughly tested
from Python 2.7 up to 3.8, PyPy and PyPy3.

At a Glance

You define a validation schema and pass it to an instance of the
Validator class:

>>> schema = {'name': {'type': 'string'}}
>>> v = Validator(schema)

Then you simply invoke the validate() to validate
a dictionary against the schema. If validation succeeds, True is returned:

>>> document = {'name': 'john doe'}
>>> v.validate(document)
True

Funding Cerberus

Cerberus is a collaboratively funded project. If you run
a business and are using Cerberus in a revenue-generating product, it would
make business sense to sponsor its development: it ensures the project that
your product relies on stays healthy and actively maintained.

Individual users are also welcome to make either a recurring pledge or a one
time donation if Cerberus has helped you in your work or personal projects.
Every single sign-up makes a significant impact towards making Cerberus
possible.

To join the backer ranks, check out Cerberus campaign on Patreon [https://www.patreon.com/nicolaiarocci].

Table of Contents

	Installation
	Stable Version

	Development Version

	Usage
	Basic Usage

	Allowing the Unknown

	Requiring all

	Fetching Processed Documents

	Warnings

	Validation Schemas
	Registries

	Validation

	Serialization

	Validation Rules
	allow_unknown

	allowed

	allof

	anyof

	check_with

	contains

	dependencies

	empty

	excludes

	forbidden

	items

	keysrules

	meta

	min, max

	minlength, maxlength

	noneof

	nullable

	*of-rules

	oneof

	readonly

	regex

	require_all

	required

	schema (dict)

	schema (list)

	type

	valuesrules

	Normalization Rules
	Renaming Of Fields

	Purging Unknown Fields

	Default Values

	Value Coercion

	Errors & Error Handling
	Error Handlers

	Python interfaces

	Extending
	Custom Rules

	Custom Data Types

	Methods that can be referenced by the check_with rule

	Custom Coercers

	Custom Default Setters

	Limitations

	Attaching Configuration Data And Instantiating Custom Validators

	Relevant Validator-attributes

	Contributing
	Making Changes

	Submitting Changes

	Running the Tests

	Funding
	Support Cerberus development

	API
	Validator Class

	Rules Set & Schema Registry

	Type Definitions

	Error Handlers

	Python Error Representations

	Exceptions

	Utilities

	Schema Validation Schema

	FAQ
	Can I use Cerberus to validate objects?

	Are Cerberus validators thread-safe, can they be used in different threads?

	External resources
	Community forums

	7 Best Python Libraries For Validating Data (February 2018)

	Nicola Iarocci: Cerberus, or Data Validation for Humans (November 2017)

	Henry Ölsner: Validate JSON data using cerberus (March 2016)

	Cerberus Changelog
	Version 1.3.5

	Version 1.3.4

	Version 1.3.3

	Version 1.3.2

	Version 1.3.1

	Version 1.3

	Version 1.2

	Version 1.1

	Version 1.0.1

	Version 1.0

	Version 0.9.2

	Version 0.9.1

	Version 0.9

	Version 0.8.1

	Version 0.8

	Version 0.7.2

	Version 0.7.1

	Version 0.7

	Version 0.6

	Version 0.5

	Version 0.4.0

	Version 0.3.0

	Version 0.2.0

	Version 0.1.0

	Version 0.0.3

	Version 0.0.2

	Version 0.0.1

	Upgrading to Cerberus 1.0
	Major Additions

	Deprecations

	Authors
	Core maintainers

	Contributors

	Contact
	Blog

	Twitter

	Mailing List

	Issues tracker

	GitHub repository

	License

Copyright Notice

Cerberus is an open source project by Nicola Iarocci [https://nicolaiarocci.com]. See the original LICENSE [https://github.com/pyeve/cerberus/blob/1.3.x/LICENSE] for more
information.

Cerberus Installation

This part of the documentation covers the installation of Cerberus. The first
step to using any software package is getting it properly installed. Please
refer to one of the many established ways to work in project-specific virtual
environments, i.e. the Virtual Environments and Packages [https://docs.python.org/3/tutorial/venv.html] section of the
Pyton documentation.

Stable Version

Cerberus is on the PyPI [https://pypi.org/project/Cerberus] so all you need to do is:

$ pip install cerberus

Development Version

Obtain the source (either as source distribution from the PyPI, with git or
other means that the Github platform provides) and use the following command
in the source’s root directory for an editable installation. Subsequent changes
to the source code will affect its following execution without re-installation.

$ pip install -e .

Cerberus Usage

Basic Usage

You define a validation schema and pass it to an instance of the
Validator class:

>>> schema = {'name': {'type': 'string'}}
>>> v = Validator(schema)

Then you simply invoke the validate() to validate
a dictionary against the schema. If validation succeeds, True is returned:

>>> document = {'name': 'john doe'}
>>> v.validate(document)
True

Alternatively, you can pass both the dictionary and the schema to the
validate() method:

>>> v = Validator()
>>> v.validate(document, schema)
True

Which can be handy if your schema is changing through the life of the
instance.

Details about validation schemas are covered in Validation Schemas.
See Validation Rules and Normalization Rules for an extensive
documentation of all supported rules.

Unlike other validation tools, Cerberus will not halt and raise an exception on
the first validation issue. The whole document will always be processed, and
False will be returned if validation failed. You can then access the
errors property to obtain a list of issues. See
Errors & Error Handling for different output options.

>>> schema = {'name': {'type': 'string'}, 'age': {'type': 'integer', 'min': 10}}
>>> document = {'name': 'Little Joe', 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': ['min value is 10']}

A DocumentError is raised when the document is not a mapping.

The Validator class and its instances are callable, allowing for the following
shorthand syntax:

>>> document = {'name': 'john doe'}
>>> v(document)
True

New in version 0.4.1.

Allowing the Unknown

By default only keys defined in the schema are allowed:

>>> schema = {'name': {'type': 'string', 'maxlength': 10}}
>>> v.validate({'name': 'john', 'sex': 'M'}, schema)
False
>>> v.errors
{'sex': ['unknown field']}

However, you can allow unknown document keys pairs by either setting
allow_unknown to True:

>>> v.schema = {}
>>> v.allow_unknown = True
>>> v.validate({'name': 'john', 'sex': 'M'})
True

Or you can set allow_unknown to a validation schema, in which case
unknown fields will be validated against it:

>>> v.schema = {}
>>> v.allow_unknown = {'type': 'string'}
>>> v.validate({'an_unknown_field': 'john'})
True
>>> v.validate({'an_unknown_field': 1})
False
>>> v.errors
{'an_unknown_field': ['must be of string type']}

allow_unknown can also be set at initialization:

>>> v = Validator({}, allow_unknown=True)
>>> v.validate({'name': 'john', 'sex': 'M'})
True
>>> v.allow_unknown = False
>>> v.validate({'name': 'john', 'sex': 'M'})
False

allow_unknown can also be set as rule to configure a validator for a nested
mapping that is checked against the schema rule:

>>> v = Validator()
>>> v.allow_unknown
False

>>> schema = {
... 'name': {'type': 'string'},
... 'a_dict': {
... 'type': 'dict',
... 'allow_unknown': True, # this overrides the behaviour for
... 'schema': { # the validation of this definition
... 'address': {'type': 'string'}
... }
... }
... }

>>> v.validate({'name': 'john',
... 'a_dict': {'an_unknown_field': 'is allowed'}},
... schema)
True

>>> # this fails as allow_unknown is still False for the parent document.
>>> v.validate({'name': 'john',
... 'an_unknown_field': 'is not allowed',
... 'a_dict':{'an_unknown_field': 'is allowed'}},
... schema)
False

>>> v.errors
{'an_unknown_field': ['unknown field']}

Changed in version 0.9: allow_unknown can also be set for nested dict fields.

Changed in version 0.8: allow_unknown can also be set to a validation schema.

Requiring all

By default any keys defined in the schema are not required.
However, you can require all document keys pairs by setting
require_all to True at validator initialization (v = Validator(…, require_all=True))
or change it latter via attribute access (v.require_all = True).
require_all can also be set as rule to configure a
validator for a subdocument that is checked against the
schema rule:

>>> v = Validator()
>>> v.require_all
False

>>> schema = {
... 'name': {'type': 'string'},
... 'a_dict': {
... 'type': 'dict',
... 'require_all': True,
... 'schema': {
... 'address': {'type': 'string'}
... }
... }
... }

>>> v.validate({'name': 'foo', 'a_dict': {}}, schema)
False
>>> v.errors
{'a_dict': [{'address': ['required field']}]}

>>> v.validate({'a_dict': {'address': 'foobar'}}, schema)
True

New in version 1.3.

Fetching Processed Documents

The normalization and coercion are performed on the copy of the original
document and the result document is available via document-property.

>>> v.schema = {'amount': {'type': 'integer', 'coerce': int}}
>>> v.validate({'amount': '1'})
True
>>> v.document
{'amount': 1}

Beside the document-property a Validator-instance has shorthand methods
to process a document and fetch its processed result.

validated Method

There’s a wrapper-method validated() that returns the
validated document. If the document didn’t validate None [https://docs.python.org/3/library/constants.html#None] is returned,
unless you call the method with the keyword argument always_return_document
set to True.
It can be useful for flows like this:

v = Validator(schema)
valid_documents = [x for x in [v.validated(y) for y in documents]
 if x is not None]

If a coercion callable or method raises an exception then the exception will
be caught and the validation with fail.

New in version 0.9.

normalized Method

Similarly, the normalized() method returns a
normalized copy of a document without validating it:

>>> schema = {'amount': {'coerce': int}}
>>> document = {'model': 'consumerism', 'amount': '1'}
>>> normalized_document = v.normalized(document, schema)
>>> type(normalized_document['amount'])
<class 'int'>

New in version 1.0.

Warnings

Warnings, such as about deprecations or likely causes of trouble, are issued
through the Python standard library’s warnings [https://docs.python.org/3/library/warnings.html#module-warnings] module. The logging
module can be configured to catch these logging.captureWarnings() [https://docs.python.org/3/library/logging.html#logging.captureWarnings].

Validation Schemas

A validation schema is a mapping [https://docs.python.org/3/glossary.html#term-mapping], usually a dict [https://docs.python.org/3/library/stdtypes.html#dict]. Schema keys
are the keys allowed in the target dictionary. Schema values express the rules
that must be matched by the corresponding target values.

schema = {'name': {'type': 'string', 'maxlength': 10}}

In the example above we define a target dictionary with only one key, name,
which is expected to be a string not longer than 10 characters. Something like
{'name': 'john doe'} would validate, while something like {'name': 'a
very long string'} or {'name': 99} would not.

By default all keys in a document are optional unless the required-rule
is set True for individual fields or the validator’s :attr:~cerberus.Validator.require_all
is set to True in order to expect all schema-defined fields to be present in the document.

Registries

There are two default registries in the cerberus module namespace where you can
store definitions for schemas and rules sets which then can be referenced in a
validation schema. You can furthermore instantiate more
Registry objects and bind them to the
rules_set_registry or
schema_registry of a validator. You may also set
these as keyword-arguments upon intitialization.

Using registries is particularly interesting if

	schemas shall include references to themselves, vulgo: schema recursion

	schemas contain a lot of reused parts and are supposed to be
serialized

>>> from cerberus import schema_registry
>>> schema_registry.add('non-system user',
... {'uid': {'min': 1000, 'max': 0xffff}})
>>> schema = {'sender': {'schema': 'non-system user',
... 'allow_unknown': True},
... 'receiver': {'schema': 'non-system user',
... 'allow_unknown': True}}

>>> from cerberus import rules_set_registry
>>> rules_set_registry.extend((('boolean', {'type': 'boolean'}),
... ('booleans', {'valuesrules': 'boolean'})))
>>> schema = {'foo': 'booleans'}

Validation

Validation schemas themselves are validated when passed to the validator or a
new set of rules is set for a document’s field. A SchemaError
is raised when an invalid validation schema is encountered. See
Schema Validation Schema for a reference.

However, be aware that no validation can be triggered for all changes below
that level or when a used definition in a registry changes. You could therefore
trigger a validation and catch the exception:

>>> v = Validator({'foo': {'allowed': []}})
>>> v.schema['foo'] = {'allowed': 1}
Traceback (most recent call last):
 File "<input>", line 1, in <module>
 File "cerberus/schema.py", line 99, in __setitem__
 self.validate({key: value})
 File "cerberus/schema.py", line 126, in validate
 self._validate(schema)
 File "cerberus/schema.py", line 141, in _validate
 raise SchemaError(self.schema_validator.errors)
SchemaError: {'foo': {'allowed': 'must be of container type'}}
>>> v.schema['foo']['allowed'] = 'strings are no valid constraint for allowed'
>>> v.schema.validate()
Traceback (most recent call last):
 File "<input>", line 1, in <module>
 File "cerberus/schema.py", line 126, in validate
 self._validate(schema)
 File "cerberus/schema.py", line 141, in _validate
 raise SchemaError(self.schema_validator.errors)
SchemaError: {'foo': {'allowed': 'must be of container type'}}

Serialization

Cerberus schemas are built with vanilla Python types: dict, list,
string, etc. Even user-defined validation rules are invoked in the schema
by name as a string. A useful side effect of this design is that schemas can
be defined in a number of ways, for example with PyYAML [https://pyyaml.org].

>>> import yaml
>>> schema_text = '''
... name:
... type: string
... age:
... type: integer
... min: 10
... '''
>>> schema = yaml.safe_load(schema_text)
>>> document = {'name': 'Little Joe', 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': ['min value is 10']}

You don’t have to use YAML of course, you can use your favorite serializer.
json [https://docs.python.org/3/library/json.html#module-json] for example. As long as there is a decoder that can produce a nested
dict, you can use it to define a schema.

For populating and dumping one of the registries, use
extend() and all().

Validation Rules

allow_unknown

This can be used in conjunction with the schema (dict) rule
when validating a mapping in order to set the
allow_unknown property of the validator for the
subdocument.
This rule has precedence over purge_unknown
(see Purging Unknown Fields).
For a full elaboration refer to this paragraph.

allowed

This rule takes a py3:collectionsabc.Container of allowed values.
Validates the target value if the value is in the allowed values.
If the target value is an iterable [https://docs.python.org/3/glossary.html#term-iterable], all its members must be in the
allowed values.

>>> v.schema = {'role': {'type': 'list', 'allowed': ['agent', 'client', 'supplier']}}
>>> v.validate({'role': ['agent', 'supplier']})
True

>>> v.validate({'role': ['intern']})
False
>>> v.errors
{'role': ["unallowed values ('intern',)"]}

>>> v.schema = {'role': {'type': 'string', 'allowed': ['agent', 'client', 'supplier']}}
>>> v.validate({'role': 'supplier'})
True

>>> v.validate({'role': 'intern'})
False
>>> v.errors
{'role': ['unallowed value intern']}

>>> v.schema = {'a_restricted_integer': {'type': 'integer', 'allowed': [-1, 0, 1]}}
>>> v.validate({'a_restricted_integer': -1})
True

>>> v.validate({'a_restricted_integer': 2})
False
>>> v.errors
{'a_restricted_integer': ['unallowed value 2']}

Changed in version 0.5.1: Added support for the int type.

allof

Validates if all of the provided constraints validates the field. See *of-rules for details.

New in version 0.9.

anyof

Validates if any of the provided constraints validates the field. See *of-rules for details.

New in version 0.9.

check_with

Validates the value of a field by calling either a function or method.

A function must be implemented like the following prototype:

def functionnname(field, value, error):
 if value is invalid:
 error(field, 'error message')

The error argument points to the calling validator’s _error method. See
Extending Cerberus on how to submit errors.

Here’s an example that tests whether an integer is odd or not:

def oddity(field, value, error):
 if not value & 1:
 error(field, "Must be an odd number")

Then, you can validate a value like this:

>>> schema = {'amount': {'check_with': oddity}}
>>> v = Validator(schema)
>>> v.validate({'amount': 10})
False
>>> v.errors
{'amount': ['Must be an odd number']}

>>> v.validate({'amount': 9})
True

If the rule’s constraint is a string, the Validator instance
must have a method with that name prefixed by _check_with_. See
Methods that can be referenced by the check_with rule for an equivalent to the function-based example
above.

The constraint can also be a sequence of these that will be called consecutively.

schema = {'field': {'check_with': (oddity, 'prime number')}}

Changed in version 1.3: The rule was renamed from validator to check_with

contains

This rule validates that the a container object contains all of the defined items.

>>> document = {'states': ['peace', 'love', 'inity']}

>>> schema = {'states': {'contains': 'peace'}}
>>> v.validate(document, schema)
True

>>> schema = {'states': {'contains': 'greed'}}
>>> v.validate(document, schema)
False

>>> schema = {'states': {'contains': ['love', 'inity']}}
>>> v.validate(document, schema)
True

>>> schema = {'states': {'contains': ['love', 'respect']}}
>>> v.validate(document, schema)
False

dependencies

This rule allows one to define either a single field name, a sequence of field
names or a mapping [https://docs.python.org/3/glossary.html#term-mapping] of field names and a sequence of allowed values as
required in the document if the field defined upon is present in the document.

>>> schema = {'field1': {'required': False}, 'field2': {'required': False, 'dependencies': 'field1'}}
>>> document = {'field1': 7}
>>> v.validate(document, schema)
True

>>> document = {'field2': 7}
>>> v.validate(document, schema)
False

>>> v.errors
{'field2': ["field 'field1' is required"]}

When multiple field names are defined as dependencies, all of these must be
present in order for the target field to be validated.

>>> schema = {'field1': {'required': False}, 'field2': {'required': False},
... 'field3': {'required': False, 'dependencies': ['field1', 'field2']}}
>>> document = {'field1': 7, 'field2': 11, 'field3': 13}
>>> v.validate(document, schema)
True

>>> document = {'field2': 11, 'field3': 13}
>>> v.validate(document, schema)
False

>>> v.errors
{'field3': ["field 'field1' is required"]}

When a mapping is provided, not only all dependencies must be present,
but also any of their allowed values must be matched.

>>> schema = {'field1': {'required': False},
... 'field2': {'required': True, 'dependencies': {'field1': ['one', 'two']}}}

>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True

>>> document = {'field1': 'three', 'field2': 7}
>>> v.validate(document, schema)
False
>>> v.errors
{'field2': ["depends on these values: {'field1': ['one', 'two']}"]}

>>> # same as using a dependencies list
>>> document = {'field2': 7}
>>> v.validate(document, schema)
False
>>> v.errors
{'field2': ["depends on these values: {'field1': ['one', 'two']}"]}

>>> # one can also pass a single dependency value
>>> schema = {'field1': {'required': False}, 'field2': {'dependencies': {'field1': 'one'}}}
>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True

>>> document = {'field1': 'two', 'field2': 7}
>>> v.validate(document, schema)
False

>>> v.errors
{'field2': ["depends on these values: {'field1': 'one'}"]}

Declaring dependencies on subdocument fields with dot-notation is also
supported:

>>> schema = {
... 'test_field': {'dependencies': ['a_dict.foo', 'a_dict.bar']},
... 'a_dict': {
... 'type': 'dict',
... 'schema': {
... 'foo': {'type': 'string'},
... 'bar': {'type': 'string'}
... }
... }
... }

>>> document = {'test_field': 'foobar', 'a_dict': {'foo': 'foo'}}
>>> v.validate(document, schema)
False

>>> v.errors
{'test_field': ["field 'a_dict.bar' is required"]}

When a subdocument is processed the lookup for a field in question starts at
the level of that document. In order to address the processed document as
root level, the declaration has to start with a ^. An occurrence of two
initial carets (^^) is interpreted as a literal, single ^ with no
special meaning.

>>> schema = {
... 'test_field': {},
... 'a_dict': {
... 'type': 'dict',
... 'schema': {
... 'foo': {'type': 'string'},
... 'bar': {'type': 'string', 'dependencies': '^test_field'}
... }
... }
... }

>>> document = {'a_dict': {'bar': 'bar'}}
>>> v.validate(document, schema)
False

>>> v.errors
{'a_dict': [{'bar': ["field '^test_field' is required"]}]}

Note

If you want to extend semantics of the dot-notation, you can
override the _lookup_field()
method.

Note

The evaluation of this rule does not consider any constraints defined with
the required rule.

Changed in version 1.0.2: Support for absolute addressing with ^.

Changed in version 0.8.1: Support for sub-document fields as dependencies.

Changed in version 0.8: Support for dependencies as a dictionary.

New in version 0.7.

empty

If constrained with False validation of an iterable [https://docs.python.org/3/glossary.html#term-iterable] value will fail
if it is empty.
Per default the emptiness of a field isn’t checked and is therefore allowed
when the rule isn’t defined. But defining it with the constraint True will
skip the possibly defined rules allowed, forbidden, items,
minlength, maxlength, regex and validator for that field when
the value is considered empty.

>>> schema = {'name': {'type': 'string', 'empty': False}}
>>> document = {'name': ''}
>>> v.validate(document, schema)
False

>>> v.errors
{'name': ['empty values not allowed']}

New in version 0.0.3.

excludes

You can declare fields to excludes others:

>>> v = Validator()
>>> schema = {'this_field': {'type': 'dict',
... 'excludes': 'that_field'},
... 'that_field': {'type': 'dict',
... 'excludes': 'this_field'}}
>>> v.validate({'this_field': {}, 'that_field': {}}, schema)
False
>>> v.validate({'this_field': {}}, schema)
True
>>> v.validate({'that_field': {}}, schema)
True
>>> v.validate({}, schema)
True

You can require both field to build an exclusive or:

>>> v = Validator()
>>> schema = {'this_field': {'type': 'dict',
... 'excludes': 'that_field',
... 'required': True},
... 'that_field': {'type': 'dict',
... 'excludes': 'this_field',
... 'required': True}}
>>> v.validate({'this_field': {}, 'that_field': {}}, schema)
False
>>> v.validate({'this_field': {}}, schema)
True
>>> v.validate({'that_field': {}}, schema)
True
>>> v.validate({}, schema)
False

You can also pass multiples fields to exclude in a list :

>>> schema = {'this_field': {'type': 'dict',
... 'excludes': ['that_field', 'bazo_field']},
... 'that_field': {'type': 'dict',
... 'excludes': 'this_field'},
... 'bazo_field': {'type': 'dict'}}
>>> v.validate({'this_field': {}, 'bazo_field': {}}, schema)
False

forbidden

Opposite to allowed this validates if a value is any but one of the defined
values:

>>> schema = {'user': {'forbidden': ['root', 'admin']}}
>>> document = {'user': 'root'}
>>> v.validate(document, schema)
False

New in version 1.0.

items

Validates the items of any iterable against a sequence of rules that must
validate each index-correspondent item. The items will only be evaluated if
the given iterable’s size matches the definition’s. This also applies during
normalization and items of a value are not normalized when the lengths mismatch.

>>> schema = {'list_of_values': {
... 'type': 'list',
... 'items': [{'type': 'string'}, {'type': 'integer'}]}
... }
>>> document = {'list_of_values': ['hello', 100]}
>>> v.validate(document, schema)
True
>>> document = {'list_of_values': [100, 'hello']}
>>> v.validate(document, schema)
False

See schema (list) rule for dealing with arbitrary length list types.

keysrules

This rules takes a set of rules as constraint that all keys of a
mapping [https://docs.python.org/3/glossary.html#term-mapping] are validated with.

>>> schema = {'a_dict': {
... 'type': 'dict',
... 'keysrules': {'type': 'string', 'regex': '[a-z]+'}}
... }
>>> document = {'a_dict': {'key': 'value'}}
>>> v.validate(document, schema)
True

>>> document = {'a_dict': {'KEY': 'value'}}
>>> v.validate(document, schema)
False

New in version 0.9.

Changed in version 1.0: Renamed from propertyschema to keyschema

Changed in version 1.3: Renamed from keyschema to keysrules

meta

This is actually not a validation rule but a field in a rules set that can
conventionally be used for application specific data that is descriptive for
the document field:

{'id': {'type': 'string', 'regex': r'[A-M]\d{,6}',
 'meta': {'label': 'Inventory Nr.'}}}

The assigned data can be of any type.

New in version 1.3.

min, max

Minimum and maximum value allowed for any object whose class implements
comparison operations (__gt__ & __lt__).

>>> schema = {'weight': {'min': 10.1, 'max': 10.9}}
>>> document = {'weight': 10.3}
>>> v.validate(document, schema)
True

>>> document = {'weight': 12}
>>> v.validate(document, schema)
False

>>> v.errors
{'weight': ['max value is 10.9']}

Changed in version 1.0: Allows any type to be compared.

Changed in version 0.7: Added support for float and number types.

minlength, maxlength

Minimum and maximum length allowed for sized types that implement __len__.

>>> schema = {'numbers': {'minlength': 1, 'maxlength': 3}}
>>> document = {'numbers': [256, 2048, 23]}
>>> v.validate(document, schema)
True

>>> document = {'numbers': [256, 2048, 23, 2]}
>>> v.validate(document, schema)
False

>>> v.errors
{'numbers': ['max length is 3']}

noneof

Validates if none of the provided constraints validates the field. See
*of-rules for details.

New in version 0.9.

nullable

If True the field value is allowed to be None [https://docs.python.org/3/library/constants.html#None]. The rule will be
checked on every field, regardless it’s defined or not. The rule’s constraint
defaults False.

>>> v.schema = {'a_nullable_integer': {'nullable': True, 'type': 'integer'}, 'an_integer': {'type': 'integer'}}

>>> v.validate({'a_nullable_integer': 3})
True
>>> v.validate({'a_nullable_integer': None})
True

>>> v.validate({'an_integer': 3})
True
>>> v.validate({'an_integer': None})
False
>>> v.errors
{'an_integer': ['null value not allowed']}

Changed in version 0.7: nullable is valid on fields lacking type definition.

New in version 0.3.0.

*of-rules

These rules allow you to define different sets of rules to validate against.
The field will be considered valid if it validates against the set in the list
according to the prefixes logics all, any, one or none.

	allof

	Validates if all of the provided constraints validates the field.

	anyof

	Validates if any of the provided constraints validates the field.

	noneof

	Validates if none of the provided constraints validates the field.

	oneof

	Validates if exactly one of the provided constraints applies.

Note

Normalization cannot be used in the rule sets
within the constraints of these rules.

Note

Before you employ these rules, you should have investigated other possible
solutions for the problem at hand with and without Cerberus. Sometimes
people tend to overcomplicate schemas with these rules.

For example, to verify that a field’s value is a number between 0 and 10 or 100
and 110, you could do the following:

>>> schema = {'prop1':
... {'type': 'number',
... 'anyof':
... [{'min': 0, 'max': 10}, {'min': 100, 'max': 110}]}}

>>> document = {'prop1': 5}
>>> v.validate(document, schema)
True

>>> document = {'prop1': 105}
>>> v.validate(document, schema)
True

>>> document = {'prop1': 55}
>>> v.validate(document, schema)
False
>>> v.errors
{'prop1': ['no definitions validate',
 {'anyof definition 0': ['max value is 10'],
 'anyof definition 1': ['min value is 100']}]}

The anyof rule tests each rules set in the list. Hence, the above schema is
equivalent to creating two separate schemas:

>>> schema1 = {'prop1': {'type': 'number', 'min': 0, 'max': 10}}
>>> schema2 = {'prop1': {'type': 'number', 'min': 100, 'max': 110}}

>>> document = {'prop1': 5}
>>> v.validate(document, schema1) or v.validate(document, schema2)
True

>>> document = {'prop1': 105}
>>> v.validate(document, schema1) or v.validate(document, schema2)
True

>>> document = {'prop1': 55}
>>> v.validate(document, schema1) or v.validate(document, schema2)
False

New in version 0.9.

*of-rules typesaver

You can concatenate any of-rule with an underscore and another rule with a
list of rule-values to save typing:

{'foo': {'anyof_regex': ['^ham', 'spam$']}}
is equivalent to
{'foo': {'anyof': [{'regex': '^ham'}, {'regex': 'spam$'}]}}
but is also equivalent to
{'foo': {'regex': r'(^ham|spam$)'}}

Thus you can use this to validate a document against several schemas without
implementing your own logic:

>>> schemas = [{'department': {'required': True, 'regex': '^IT$'}, 'phone': {'nullable': True}},
... {'department': {'required': True}, 'phone': {'required': True}}]
>>> emloyee_vldtr = Validator({'employee': {'oneof_schema': schemas, 'type': 'dict'}}, allow_unknown=True)
>>> invalid_employees_phones = []
>>> for employee in employees:
... if not employee_vldtr.validate(employee):
... invalid_employees_phones.append(employee)

oneof

Validates if exactly one of the provided constraints applies. See *of-rules for details.

New in version 0.9.

readonly

If True the value is readonly. Validation will fail if this field is
present in the target dictionary. This is useful, for example, when receiving
a payload which is to be validated before it is sent to the datastore. The
field might be provided by the datastore, but should not writable.

A validator can be configured with the initialization argument
purge_readonly and the property with the same name to let it delete all
fields that have this rule defined positively.

Changed in version 1.0.2: Can be used in conjunction with default and default_setter,
see Default Values.

regex

The validation will fail if the field’s value does not match the provided
regular expression. It is only tested on string values.

>>> schema = {
... 'email': {
... 'type': 'string',
... 'regex': '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$'
... }
... }
>>> document = {'email': 'john@example.com'}
>>> v.validate(document, schema)
True

>>> document = {'email': 'john_at_example_dot_com'}
>>> v.validate(document, schema)
False

>>> v.errors
{'email': ["value does not match regex '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$'"]}

A trailing $ is ensured for all patterns in order to encourage users to
write complete patterns for matching (and not a searching) strings. The
implementation is inconsistent with regards to a leading ^, these are not
enforced. That inconsistency will not be fixed for the 1.3.x release
series.
For details on regular expression syntax, see the documentation on the standard
library’s re [https://docs.python.org/3/library/re.html#module-re]-module.

Hint

Mind that one can set behavioural flags as part of the expression which is
equivalent to passing flags to the re.compile() [https://docs.python.org/3/library/re.html#re.compile] function for
example. So, the constraint '(?i)holy grail' includes the equivalent
of the re.I [https://docs.python.org/3/library/re.html#re.I] flag and matches any string that includes ‘holy grail’
or any variant of it with upper-case glyphs. Look for (?aiLmsux) in the
mentioned library documentation for a description there.

New in version 0.7.

require_all

This can be used in conjunction with the schema (dict) rule when validating
a mapping in order to set the require_all property
of the validator for the subdocument.
For a full elaboration refer to this paragraph.

required

If True the field is mandatory. Validation will fail when it is missing,
unless validate() is called with update=True:

>>> v.schema = {'name': {'required': True, 'type': 'string'}, 'age': {'type': 'integer'}}
>>> document = {'age': 10}
>>> v.validate(document)
False
>>> v.errors
{'name': ['required field']}

>>> v.validate(document, update=True)
True

Note

To define all fields of a document as required see
this section about the available options.

Note

String fields with empty values will still be validated, even when
required is set to True. If you don’t want to accept empty values,
see the empty rule.

Note

The evaluation of this rule does not consider any constraints defined with
the dependencies rule.

Changed in version 0.8: Check field dependencies.

schema (dict)

If a field for which a schema-rule is defined has a mapping as value,
that mapping will be validated against the schema that is provided as
constraint.

>>> schema = {'a_dict': {'type': 'dict', 'schema': {'address': {'type': 'string'},
... 'city': {'type': 'string', 'required': True}}}}
>>> document = {'a_dict': {'address': 'my address', 'city': 'my town'}}
>>> v.validate(document, schema)
True

Note

To validate arbitrary keys of a mapping, see keysrules-rule, resp.
valuesrules-rule for validating arbitrary values of a mapping.

schema (list)

If schema-validation encounters an arbritrary sized sequence as value,
all items of the sequence will be validated against the rules provided in
schema’s constraint.

>>> schema = {'a_list': {'type': 'list', 'schema': {'type': 'integer'}}}
>>> document = {'a_list': [3, 4, 5]}
>>> v.validate(document, schema)
True

The schema rule on list types is also the preferred method for defining
and validating a list of dictionaries.

Note

Using this rule should be accompanied with a type-rule explicitly
restricting the field to the list-type like in the example. Otherwise
false results can be expected when a mapping is validated against this rule
with constraints for a sequence.

>>> schema = {'rows': {'type': 'list',
... 'schema': {'type': 'dict', 'schema': {'sku': {'type': 'string'},
... 'price': {'type': 'integer'}}}}}
>>> document = {'rows': [{'sku': 'KT123', 'price': 100}]}
>>> v.validate(document, schema)
True

Changed in version 0.0.3: Schema rule for list types of arbitrary length

type

Data type allowed for the key value. Can be one of the following names:

	Type Name

	Python 2 Type

	Python 3 Type

	boolean

	bool [https://docs.python.org/2/library/functions.html#bool]

	bool [https://docs.python.org/3/library/functions.html#bool]

	binary

	py2:bytes [1], bytearray [https://docs.python.org/2/library/functions.html#bytearray]

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	date

	datetime.date [https://docs.python.org/2/library/datetime.html#datetime.date]

	datetime.date [https://docs.python.org/3/library/datetime.html#datetime.date]

	datetime

	datetime.datetime [https://docs.python.org/2/library/datetime.html#datetime.datetime]

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	dict

	collections.Mapping [https://docs.python.org/2/library/collections.html#collections.Mapping]

	collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]

	float

	float [https://docs.python.org/2/library/functions.html#float]

	float [https://docs.python.org/3/library/functions.html#float]

	integer

	int [https://docs.python.org/2/library/functions.html#int], long [https://docs.python.org/2/library/functions.html#long]

	int [https://docs.python.org/3/library/functions.html#int]

	list

	collections.Sequence [https://docs.python.org/2/library/collections.html#collections.Sequence], excl. string

	collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence], excl. string

	number

	float [https://docs.python.org/2/library/functions.html#float], int [https://docs.python.org/2/library/functions.html#int], long [https://docs.python.org/2/library/functions.html#long], excl. bool [https://docs.python.org/2/library/functions.html#bool]

	float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], excl. bool [https://docs.python.org/3/library/functions.html#bool]

	set

	set [https://docs.python.org/2/library/stdtypes.html#set]

	set [https://docs.python.org/3/library/stdtypes.html#set]

	string

	basestring() [https://docs.python.org/2/library/functions.html#basestring]

	str [https://docs.python.org/3/library/stdtypes.html#str]

You can extend this list and support custom types.

A list of types can be used to allow different values:

>>> v.schema = {'quotes': {'type': ['string', 'list']}}
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': ['Do not disturb my circles!', 'Heureka!']})
True

>>> v.schema = {'quotes': {'type': ['string', 'list'], 'schema': {'type': 'string'}}}
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': [1, 'Heureka!']})
False
>>> v.errors
{'quotes': [{0: ['must be of string type']}]}

Note

While the type rule is not required to be set at all, it is not
encouraged to leave it unset especially when using more complex rules such
as schema. If you decide you still don’t want to set an explicit type,
rules such as schema are only applied to values where the rules can
actually be used (such as dict and list). Also, in the case of
schema, cerberus will try to decide if a list or a dict type
rule is more appropriate and infer it depending on what the schema rule
looks like.

Note

Please note that type validation is performed before most others which
exist for the same field (only nullable and readonly are considered
beforehand). In the occurrence of a type failure subsequent validation
rules on the field will be skipped and validation will continue on other
fields. This allows one to safely assume that field type is correct when other
(standard or custom) rules are invoked.

Changed in version 1.0: Added the binary data type.

Changed in version 0.9: If a list of types is given, the key value must match any of them.

Changed in version 0.7.1: dict and list typechecking are now performed with the more generic
Mapping and Sequence types from the builtin collections module.
This means that instances of custom types designed to the same interface as
the builtin dict and list types can be validated with Cerberus. We
exclude strings when type checking for list/Sequence because it
in the validation situation it is almost certain the string was not the
intended data type for a sequence.

Changed in version 0.7: Added the set data type.

Changed in version 0.6: Added the number data type.

Changed in version 0.4.0: Type validation is always executed first, and blocks other field validation
rules on failure.

Changed in version 0.3.0: Added the float data type.

[1]
This is actually an alias of str [https://docs.python.org/2/library/functions.html#str] in Python 2.

valuesrules

This rules takes a set of rules as constraint that all values of a
mapping [https://docs.python.org/3/glossary.html#term-mapping] are validated with.

>>> schema = {'numbers':
... {'type': 'dict',
... 'valuesrules': {'type': 'integer', 'min': 10}}
... }
>>> document = {'numbers': {'an integer': 10, 'another integer': 100}}
>>> v.validate(document, schema)
True

>>> document = {'numbers': {'an integer': 9}}
>>> v.validate(document, schema)
False

>>> v.errors
{'numbers': [{'an integer': ['min value is 10']}]}

New in version 0.7.

Changed in version 0.9: renamed keyschema to valueschema

Changed in version 1.3: renamed valueschema to valuesrules

Normalization Rules

Normalization rules are applied to fields, also in schema for mappings, as
well when defined as a bulk operation by schema (for sequences),
allow_unknown, keysrules and valuesrules. Normalization rules
in definitions for testing variants like with anyof are not processed.

The normalizations are applied as given in this document for each level in the
mapping, traversing depth-first.

Renaming Of Fields

You can define a field to be renamed before any further processing.

>>> v = Validator({'foo': {'rename': 'bar'}})
>>> v.normalized({'foo': 0})
{'bar': 0}

To let a callable rename a field or arbitrary fields, you can define a handler
for renaming. If the constraint is a string, it points to a
custom method. If the constraint is an iterable, the value
is processed through that chain.

>>> v = Validator({}, allow_unknown={'rename_handler': int})
>>> v.normalized({'0': 'foo'})
{0: 'foo'}

>>> even_digits = lambda x: '0' + x if len(x) % 2 else x
>>> v = Validator({}, allow_unknown={'rename_handler': [str, even_digits]})
>>> v.normalized({1: 'foo'})
{'01': 'foo'}

New in version 1.0.

Purging Unknown Fields

After renaming, unknown fields will be purged if the
purge_unknown property of a
Validator instance is True; it defaults to False.
You can set the property per keyword-argument upon initialization or as rule for
subdocuments like allow_unknown (see Allowing the Unknown). The default is
False.
If a subdocument includes an allow_unknown rule then unknown fields
will not be purged on that subdocument.

>>> v = Validator({'foo': {'type': 'string'}}, purge_unknown=True)
>>> v.normalized({'bar': 'foo'})
{}

New in version 1.0.

Default Values

You can set default values for missing fields in the document by using the default rule.

>>> v.schema = {'amount': {'type': 'integer'}, 'kind': {'type': 'string', 'default': 'purchase'}}
>>> v.normalized({'amount': 1}) == {'amount': 1, 'kind': 'purchase'}
True

>>> v.normalized({'amount': 1, 'kind': None}) == {'amount': 1, 'kind': 'purchase'}
True

>>> v.normalized({'amount': 1, 'kind': 'other'}) == {'amount': 1, 'kind': 'other'}
True

You can also define a default setter callable to set the default value
dynamically. The callable gets called with the current (sub)document as the
only argument. Callables can even depend on one another, but normalizing will
fail if there is a unresolvable/circular dependency. If the constraint is a
string, it points to a custom method.

>>> v.schema = {'a': {'type': 'integer'}, 'b': {'type': 'integer', 'default_setter': lambda doc: doc['a'] + 1}}
>>> v.normalized({'a': 1}) == {'a': 1, 'b': 2}
True

>>> v.schema = {'a': {'type': 'integer', 'default_setter': lambda doc: doc['not_there']}}
>>> v.normalized({})
>>> v.errors
{'a': ["default value for 'a' cannot be set: Circular dependencies of default setters."]}

You can even use both default and readonly on the same field. This
will create a field that cannot be assigned a value manually but it will be
automatically supplied with a default value by Cerberus. Of course the same
applies for default_setter.

Changed in version 1.0.2: Can be used in conjunction with readonly.

New in version 1.0.

Value Coercion

Coercion allows you to apply a callable (given as object or the name of a
custom coercion method) to a value before the document
is validated. The return value of the callable replaces the new value in the
document. This can be used to convert values or sanitize data before it is
validated. If the constraint is an iterable of callables and names, the value
is processed through that chain of coercers.

>>> v.schema = {'amount': {'type': 'integer'}}
>>> v.validate({'amount': '1'})
False

>>> v.schema = {'amount': {'type': 'integer', 'coerce': int}}
>>> v.validate({'amount': '1'})
True
>>> v.document
{'amount': 1}

>>> to_bool = lambda v: v.lower() in ('true', '1')
>>> v.schema = {'flag': {'type': 'boolean', 'coerce': (str, to_bool)}}
>>> v.validate({'flag': 'true'})
True
>>> v.document
{'flag': True}

New in version 0.9.

Errors & Error Handling

Errors can be evaluated via Python interfaces or be processed to different
output formats with error handlers.

Error Handlers

Error handlers will return different output via the
errors property of a validator after the processing
of a document. They base on BaseErrorHandler which
defines the mandatory interface. The error handler to be used can be passed as
keyword-argument error_handler to the initialization of a validator or by
setting it’s property with the same name at any time. On initialization either
an instance or a class can be provided. To pass keyword-arguments to the
initialization of a class, provide a two-value tuple with the error handler
class and the dictionary containing the arguments.

The following handlers are available:

	BasicErrorHandler: This is the default that
returns a dictionary. The keys refer to the document’s ones and the values
are lists containing error messages. Errors of nested fields are kept in a
dictionary as last item of these lists.

Python interfaces

An error is represented as ValidationError that has
the following properties:

	document_path: The path within the document. For flat dictionaries
this simply is a key’s name in a tuple, for nested ones it’s all traversed
key names. Items in sequences are represented by their index.

	schema_path: The path within the schema.

	code: The unique identifier for an error. See Error Codes for a
list.

	rule: The rule that was evaluated when the error occurred.

	constraint: That rule’s constraint.

	value: The value being validated.

	info: This tuple contains additional information that were submitted
with the error. For most errors this is actually nothing. For bulk
validations (e.g. with items or keysrules) this property keeps
all individual errors.
See the implementation of a rule in the source code to figure out its
additional logging.

You can access the errors per these properties of a Validator
instance after a processing of a document:

	_errors: This ErrorsList instance holds all
submitted errors. It is not intended to manipulate errors directly via this
attribute. You can test if at least one error with a specific error
definition is in that list.

	document_error_tree: A dict-like object that allows one to query
nodes corresponding to your document.
The subscript notation on a node allows one to fetch either a specific error
that matches the given ErrorDefinition or a child
node with the given key.
If there’s no matching error respectively no errors occurred in a node or
below, None [https://docs.python.org/3/library/constants.html#None] will be returned instead.
A node can also be tested with the in operator with either an
ErrorDefinition or a possible child node’s key.
A node’s errors are contained in its errors property which is also
an ErrorsList. Its members are yielded when
iterating over a node.

	schema_error_tree: Similarly for the used schema.

Changed in version 1.0: Errors are stored as ValidationError in a
ErrorList.

Examples

>>> schema = {'cats': {'type': 'integer'}}
>>> document = {'cats': 'two'}
>>> v.validate(document, schema)
False
>>> cerberus.errors.BAD_TYPE in v._errors
True
>>> v.document_error_tree['cats'].errors == v.schema_error_tree['cats']['type'].errors
True
>>> cerberus.errors.BAD_TYPE in v.document_error_tree['cats']
True
>>> v.document_error_tree['cats'][cerberus.errors.BAD_TYPE] \
... == v.document_error_tree['cats'].errors[0]
True
>>> error = v.document_error_tree['cats'].errors[0]
>>> error.document_path
('cats',)
>>> error.schema_path
('cats', 'type')
>>> error.rule
'type'
>>> error.constraint
'integer'
>>> error.value
'two'

Extending Cerberus

Though you can use functions in conjunction with the coerce and the
check_with rules, you can easily extend the Validator
class with custom rules, types, check_with handlers, coercers
and default_setters.
While the function-based style is more suitable for special and one-off uses,
a custom class leverages these possibilities:

	custom rules can be defined with constrains in a schema

	extending the available type s

	use additional contextual data

	schemas are serializable

The references in schemas to these custom methods can use space characters
instead of underscores, e.g. {'foo': {'check_with': 'is odd'}} is an alias
for {'foo': {'check_with': 'is_odd'}}.

Custom Rules

Suppose that in our use case some values can only be expressed as odd integers,
therefore we decide to add support for a new is_odd rule to our validation
schema:

schema = {'amount': {'is odd': True, 'type': 'integer'}}

This is how we would go to implement that:

from cerberus import Validator

class MyValidator(Validator):
 def _validate_is_odd(self, constraint, field, value):
 """ Test the oddity of a value.

 The rule's arguments are validated against this schema:
 {'type': 'boolean'}
 """
 if constraint is True and not bool(value & 1):
 self._error(field, "Must be an odd number")

By subclassing Cerberus Validator class and adding the custom
validate<rulename> method, we just enhanced Cerberus to suit our needs.
The custom rule is_odd is now available in our schema and, what really
matters, we can use it to validate all odd values:

>>> v = MyValidator(schema)
>>> v.validate({'amount': 10})
False
>>> v.errors
{'amount': ['Must be an odd number']}
>>> v.validate({'amount': 9})
True

As schemas themselves are validated, you can provide constraints as literal
Python expression in the docstring of the rule’s implementing method to
validate the arguments given in a schema for that rule. Either the docstring
contains solely the literal or the literal is placed at the bottom of the
docstring preceded by
The rule's arguments are validated against this schema:
See the source of the contributed rules for more examples.

Custom Data Types

Cerberus supports and validates several standard data types (see type).
When building a custom validator you can add and validate your own data types.

Additional types can be added on the fly by assigning a
TypeDefinition to the designated type name in
types_mapping:

from decimal import Decimal

decimal_type = cerberus.TypeDefinition('decimal', (Decimal,), ())

Validator.types_mapping['decimal'] = decimal_type

Caution

As the types_mapping property is a mutable type, any change to its
items on an instance will affect its class.

They can also be defined for subclasses of Validator:

from decimal import Decimal

decimal_type = cerberus.TypeDefinition('decimal', (Decimal,), ())

class MyValidator(Validator):
 types_mapping = Validator.types_mapping.copy()
 types_mapping['decimal'] = decimal_type

New in version 0.0.2.

Changed in version 1.0: The type validation logic changed, see Upgrading to Cerberus 1.0.

Changed in version 1.2: Added the types_mapping property and marked
methods for testing types as deprecated.

Methods that can be referenced by the check_with rule

If a validation test doesn’t depend on a specified constraint from a schema or
needs to be more complex than a rule should be, it’s possible to rather define
it as value checker than as a rule. There are two ways to use the
check_with rule.

One is by extending Validator with a method prefixed with
_check_with_. This allows to access the whole context of the validator
instance including arbitrary configuration values and state. To reference such
method using the check_with rule, simply pass the unprefixed method name as
a string constraint.

For example, one can define an oddity validator method as follows:

class MyValidator(Validator):
 def _check_with_oddity(self, field, value):
 if not value & 1:
 self._error(field, "Must be an odd number")

Usage would look something like:

schema = {'amount': {'type': 'integer', 'check_with': 'oddity'}}

The second option to use the rule is to define a standalone function and pass
it as the constraint. This brings with it the benefit of not having to extend
Validator. To read more about this implementation and see examples check
out the rule’s documentation.

Custom Coercers

You can also define custom methods that return a coerce d value or point to
a method as rename_handler. The method name must be prefixed with
_normalize_coerce_.

class MyNormalizer(Validator):
 def __init__(self, multiplier, *args, **kwargs):
 super(MyNormalizer, self).__init__(*args, **kwargs)
 self.multiplier = multiplier

 def _normalize_coerce_multiply(self, value):
 return value * self.multiplier

>>> schema = {'foo': {'coerce': 'multiply'}}
>>> document = {'foo': 2}
>>> MyNormalizer(multiplier=2).normalized(document, schema)
{'foo': 4}

Custom Default Setters

Similar to custom rename handlers, it is also possible to create custom default
setters.

from datetime import datetime

class MyNormalizer(Validator):
 def _normalize_default_setter_utcnow(self, document):
 return datetime.utcnow()

>>> schema = {'creation_date': {'type': 'datetime', 'default_setter': 'utcnow'}}
>>> MyNormalizer().normalized({}, schema)
{'creation_date': datetime.datetime(...)}

Limitations

It may be a bad idea to overwrite particular contributed rules.

Attaching Configuration Data And Instantiating Custom Validators

It’s possible to pass arbitrary configuration values when instantiating a
Validator or a subclass as keyword arguments (whose names
are not used by Cerberus). These can be used in all of the handlers described
in this document that have access to the instance.
Cerberus ensures that this data is available in all child instances that may
get spawned during processing. When you implement an __init__ method on
a customized validator, you must ensure that all positional and keyword
arguments are also passed to the parent class’ initialization method. Here’s
an example pattern:

class MyValidator(Validator):
 def __init__(self, *args, **kwargs):
 # assign a configuration value to an instance property
 # for convenience
 self.additional_context = kwargs.get('additional_context')
 # pass all data to the base classes
 super(MyValidator, self).__init__(*args, **kwargs)

 # alternatively a dynamic property can be defined, rendering
 # the __init__ method unnecessary in this example case
 @property
 def additional_context(self):
 return self._config.get('additional_context', 'bar')

 # an optional property setter if you deal with state
 @additional_context.setter
 def additional_context(self, value):
 self._config["additional_context"] = value

 def _check_with_foo(self, field, value):
 make_use_of(self.additional_context)

Warning

It is neither recommended to access the _config property in other
situations than outlined in the sketch above nor to to change its contents
during the processing of a document. Both cases are not tested and are
unlikely to get officially supported.

New in version 0.9.

There’s a function validator_factory() to get a
Validator mutant with concatenated docstrings.

New in version 1.0.

Relevant Validator-attributes

There are some attributes of a Validator that you should be
aware of when writing custom Validators.

Validator.document

A validator accesses the document property when
fetching fields for validation. It also allows validation of a field to happen
in context of the rest of the document.

New in version 0.7.1.

Validator.schema

Alike, the schema property holds the used schema.

Note

This attribute is not the same object that was passed as schema to the
validator at some point. Also, its content may differ, though it still
represents the initial constraints. It offers the same interface like a
dict [https://docs.python.org/3/library/stdtypes.html#dict].

Validator._error

There are three signatures that are accepted to submit errors to the
Validator’s error stash. If necessary the given information will be parsed
into a new instance of ValidationError.

Full disclosure

In order to be able to gain complete insight into the context of an error at a
later point, you need to call _error() with two
mandatory arguments:

	the field where the error occurred

	an instance of a ErrorDefinition

For custom rules you need to define an error as ErrorDefinition with a
unique id and the causing rule that is violated. See errors
for a list of the contributed error definitions. Keep in mind that bit 7 marks
a group error, bit 5 marks an error raised by a validation against different
sets of rules.

Optionally you can submit further arguments as information. Error handlers
that are targeted for humans will use these as positional arguments when
formatting a message with str.format() [https://docs.python.org/3/library/stdtypes.html#str.format]. Serializing handlers will keep
these values in a list.

New in version 1.0.

Simple custom errors

A simpler form is to call _error() with the field and a string
as message. However the resulting error will contain no information about the
violated constraint. This is supposed to maintain backward compatibility, but
can also be used when an in-depth error handling isn’t needed.

Multiple errors

When using child-validators, it is a convenience to submit all their errors
; which is a list of ValidationError instances.

New in version 1.0.

Validator._get_child_validator

If you need another instance of your Validator-subclass, the
_get_child_validator()-method returns another
instance that is initiated with the same arguments as self was. You can
specify overriding keyword-arguments.
As the properties document_path and schema_path (see below) are
inherited by the child validator, you can extend these by passing a single
value or values-tuple with the keywords document_crumb and
schema_crumb.
Study the source code for example usages.

New in version 0.9.

Changed in version 1.0: Added document_crumb and schema_crumb as optional keyword-
arguments.

Validator.root_document, .root_schema, .root_allow_unknown & .root_require_all

A child-validator - as used when validating a schema - can access the first
generation validator’s document and schema that are being processed as well as
the constraints for unknown fields via its root_document, root_schema,
root_allow_unknown and root_require_all properties.

New in version 1.0.

Changed in version 1.3: Added root_require_all

Validator.document_path & Validator.schema_path

These properties maintain the path of keys within the document respectively the
schema that was traversed by possible parent-validators. Both will be used as
base path when an error is submitted.

New in version 1.0.

Validator.recent_error

The last single error that was submitted is accessible through the
recent_error-attribute.

New in version 1.0.

Validator.mandatory_validations, Validator.priority_validations & Validator._remaining_rules

You can use these class properties and instance instance property if you want
to adjust the validation logic for each field validation.
mandatory_validations is a tuple that contains rules that will be validated
for each field, regardless if the rule is defined for a field in a schema or
not.
priority_validations is a tuple of ordered rules that will be validated
before any other.
_remaining_rules is a list that is populated under consideration of these
and keeps track of the rules that are next in line to be evaluated. Thus it can
be manipulated by rule handlers to change the remaining validation for the
current field.
Preferably you would call _drop_remaining_rules()
to remove particular rules or all at once.

New in version 1.0.

Changed in version 1.2: Added _remaining_rules for extended leverage.

How to Contribute

There are no plans to develop Cerberus further than the current feature set.
Bug fixes and documentation improvements are welcome and will be published with
yearly service releases.

Making Changes

	Fork [https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/fork-a-repo] the repository [https://github.com/pyeve/cerberus] on GitHub.

	Create a new topic branch from the 1.3.x branch.

	Make commits of logical units (if needed rebase your feature branch before
submitting it).

	Make sure your commit messages are in the proper format [https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	If your commit fixes an open issue, reference it in the commit message.

	Make sure you have added the necessary tests for your changes.

	Run all the tests to assure nothing else was accidentally broken.

	Install and enable pre-commit [https://pre-commit.com/] (pip install pre-commit, then pre-commit
install) to ensure styleguides and codechecks are followed.

	Don’t forget to add yourself to the AUTHORS.rst document.

These guidelines also apply when helping with documentation (actually, for
typos and minor additions you might choose to fork and edit [https://github.blog/2011-04-26-forking-with-the-edit-button/]).

Submitting Changes

	Push your changes to the topic branch in your fork of the repository.

	Submit a Pull Request [https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request].

	Wait for maintainer feedback. Please be patient.

Running the Tests

The easiest way to get started is to run the tests in your local environment
with pytest [https://pytest.org]:

$ pytest cerberus/tests

Testing with other Python versions

Before you submit a pull request, make sure your tests and changes run in
all supported python versions. Instead of creating all those environments by
hand, you can use tox [https://tox.readthedocs.io] that automatically manages virtual environments. Mind
that the interpreters themselves need to be available on the system.

$ pip install tox # First time only
$ tox

This might take some time the first run as the different virtual environments
are created and dependencies are installed.

If something goes wrong and one test fails, you might need to run that test in
the specific python version. You can use the created environments to run some
specific tests. For example, if a test suite fails in Python 3.11:

$ tox -e py311

Have a look at tox.ini for the available test environments and their setup.

Running the benchmarks

There’s a benchmark suite that you can use to measure how changes imapact
Cerberus’ performance:

$ pytest cerberus/benchmarks

Building the HTML-documentation

To preview the rendered HTML-documentation you must initially install the
documentation framework and a theme:

$ pip install -r docs/requirements.txt

The HTML build is triggered with:

$ make -C docs html

The result can be accessed by opening docs/_build/html/index.html.

Funding

We believe that collaboratively funded software can offer outstanding returns
on investment, by encouraging users to collectively share the cost of
development.

Cerberus continues to be open-source and permissively licensed, but we firmly
believe it is in the commercial best-interest for users of the project to
invest in its ongoing development.

Signing up as a Backer:

	Directly contribute to faster releases, more features, and higher quality software.

	Allow more time to be invested in documentation, issue triage, and community support.

	Safeguard the future development of Cerberus.

If you run a business and is using Cerberus in a revenue-generating product, it
would make business sense to sponsor its development: it ensures the project
that your product relies on stays healthy and actively maintained. It can also
help your exposure in the Cerberus community and makes it easier to attract Cerberus
developers.

Of course, individual users are also welcome to make a recurring pledge if
Cerberus has helped you in your work or personal projects. Alternatively,
consider donating as a sign of appreciation - like buying me coffee once in
a while :)

Support Cerberus development

You can support Cerberus development by pledging on Patreon or donating on PayPal.

	Become a Backer [https://www.patreon.com/nicolaiarocci] (recurring pledge)

	Donate via PayPal [https://www.paypal.com/donate/?cmd=_s-xclick&hosted_button_id=7U7G7EWU7EPNW] (one time)

API Documentation

Validator Class

	
class cerberus.Validator(*args, **kwargs)

	Validator class. Normalizes and/or validates any mapping against a
validation-schema which is provided as an argument at class instantiation
or upon calling the validate(),
validated() or
normalized() method. An instance itself is
callable and executes a validation.

All instantiation parameters are optional.

There are the introspective properties types, validators,
coercers, default_setters, rules,
normalization_rules and validation_rules.

The attributes reflecting the available rules are assembled considering
constraints that are defined in the docstrings of rules’ methods and is
effectively used as validation schema for schema.

	Parameters:

	
	schema (any mapping [https://docs.python.org/3/glossary.html#term-mapping]) – See schema.
Defaults to None [https://docs.python.org/3/library/constants.html#None].

	ignore_none_values (bool [https://docs.python.org/3/library/functions.html#bool]) – See ignore_none_values.
Defaults to False.

	allow_unknown (bool [https://docs.python.org/3/library/functions.html#bool] or any mapping [https://docs.python.org/3/glossary.html#term-mapping]) – See allow_unknown.
Defaults to False.

	require_all (bool [https://docs.python.org/3/library/functions.html#bool]) – See require_all.
Defaults to False.

	purge_unknown (bool [https://docs.python.org/3/library/functions.html#bool]) – See purge_unknown.
Defaults to to False.

	purge_readonly (bool [https://docs.python.org/3/library/functions.html#bool]) – Removes all fields that are defined as readonly in the
normalization phase.

	error_handler (class or instance based on
BaseErrorHandler or
tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The error handler that formats the result of
errors.
When given as two-value tuple with an error-handler
class and a dictionary, the latter is passed to the
initialization of the error handler.
Default: BasicErrorHandler.

	
_drop_remaining_rules(*rules)

	Drops rules from the queue of the rules that still need to be evaluated for the
currently processed field. If no arguments are given, the whole queue is
emptied.

	
_error(*args)

	Creates and adds one or multiple errors.

	Parameters:

	args – Accepts different argument’s signatures.

1. Bulk addition of errors:

	iterable [https://docs.python.org/3/glossary.html#term-iterable] of
ValidationError-instances

The errors will be added to
_errors.

2. Custom error:

	the invalid field’s name

	the error message

A custom error containing the message will be created and
added to _errors.
There will however be fewer information contained in the
error (no reference to the violated rule and its
constraint).

3. Defined error:

	the invalid field’s name

	the error-reference, see cerberus.errors

	arbitrary, supplemental information about the error

A ValidationError instance will
be created and added to
_errors.

	
_errors

	The list of errors that were encountered since the last document
processing was invoked.
Type: ErrorList

	
_get_child_validator(document_crumb=None, schema_crumb=None, **kwargs)

	Creates a new instance of Validator-(sub-)class. All initial parameters of the
parent are passed to the initialization, unless a parameter is given as an
explicit keyword-parameter.

	Parameters:

	
	document_crumb (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or hashable [https://docs.python.org/3/glossary.html#term-hashable]) – Extends the
document_path
of the child-validator.

	schema_crumb (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or hashable) – Extends the
schema_path
of the child-validator.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Overriding keyword-arguments for initialization.

	Returns:

	an instance of self.__class__

	
_lookup_field(path)

	Searches for a field as defined by path. This method is used by the
dependency evaluation logic.

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path elements are separated by a .. A leading ^
indicates that the path relates to the document root,
otherwise it relates to the currently evaluated document,
which is possibly a subdocument.
The sequence ^^ at the start will be interpreted as a
literal ^.

	Returns:

	Either the found field name and its value or None [https://docs.python.org/3/library/constants.html#None] for
both.

	Return type:

	A two-value tuple [https://docs.python.org/3/library/stdtypes.html#tuple].

	
_remaining_rules

	Keeps track of the rules that are next in line to be evaluated
during the validation of a field.
Type: list [https://docs.python.org/3/library/stdtypes.html#list]

	
_valid_schemas = {}

	A set [https://docs.python.org/3/library/stdtypes.html#set] of hashes derived from validation schemas that are legit for a
particular Validator class.

	
property allow_unknown

	If True unknown fields that are not defined in the schema will be ignored.
If a mapping with a validation schema is given, any undefined field will be
validated against its rules. Also see Allowing the Unknown.
Type: bool [https://docs.python.org/3/library/functions.html#bool] or any mapping [https://docs.python.org/3/glossary.html#term-mapping]

	
classmethod clear_caches()

	Purge the cache of known valid schemas.

	
document

	The document that is or was recently processed.
Type: any mapping [https://docs.python.org/3/glossary.html#term-mapping]

	
document_error_tree

	A tree representiation of encountered errors following the
structure of the document.
Type: DocumentErrorTree

	
document_path

	The path within the document to the current sub-document.
Type: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
error_handler

	The error handler used to format errors
and process submitted errors with
_error().
Type: BaseErrorHandler

	
property errors

	The errors of the last processing formatted by the handler that is bound to
error_handler.

	
property ignore_none_values

	Whether to not process None [https://docs.python.org/3/library/constants.html#None]-values in a document or not.
Type: bool [https://docs.python.org/3/library/functions.html#bool]

	
property is_child

	True for child-validators obtained with
_get_child_validator().
Type: bool [https://docs.python.org/3/library/functions.html#bool]

	
mandatory_validations = ('nullable',)

	Rules that are evaluated on any field, regardless whether defined in the schema or
not.
Type: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
normalized(document, schema=None, always_return_document=False)

	Returns the document normalized according to the specified rules of a schema.

	Parameters:

	
	document (any mapping [https://docs.python.org/3/glossary.html#term-mapping]) – The document to normalize.

	schema (any mapping [https://docs.python.org/3/glossary.html#term-mapping]) – The validation schema. Defaults to None [https://docs.python.org/3/library/constants.html#None]. If not
provided here, the schema must have been provided at
class instantiation.

	always_return_document (bool [https://docs.python.org/3/library/functions.html#bool]) – Return the document, even if an error
occurred. Defaults to: False.

	Returns:

	A normalized copy of the provided mapping or None [https://docs.python.org/3/library/constants.html#None] if an
error occurred during normalization.

	
priority_validations = ('nullable', 'readonly', 'type', 'empty')

	Rules that will be processed in that order before any other.
Type: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property purge_unknown

	If True, unknown fields will be deleted from the document unless a
validation is called with disabled normalization. Also see
Purging Unknown Fields.
Type: bool [https://docs.python.org/3/library/functions.html#bool]

	
recent_error

	The last individual error that was submitted.
Type: ValidationError

	
property require_all

	If True known fields that are defined in the schema will be required.
Type: bool [https://docs.python.org/3/library/functions.html#bool]

	
property root_allow_unknown

	The allow_unknown attribute of the first level
ancestor of a child validator.

	
property root_document

	The document attribute of the first level ancestor
of a child validator.

	
property root_require_all

	The require_all attribute of the first level
ancestor of a child validator.

	
property root_schema

	The schema attribute of the first level ancestor of
a child validator.

	
property rules_set_registry

	The registry that holds referenced rules sets.
Type: Registry

	
property schema

	The validation schema of a validator. When a schema is passed to a method, it
replaces this attribute.
Type: any mapping [https://docs.python.org/3/glossary.html#term-mapping] or None [https://docs.python.org/3/library/constants.html#None]

	
schema_error_tree

	A tree representiation of encountered errors following the
structure of the schema.
Type: SchemaErrorTree

	
schema_path

	The path within the schema to the current sub-schema.
Type: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property schema_registry

	The registry that holds referenced schemas.
Type: Registry

	
types_mapping = {'binary': TypeDefinition(name='binary', included_types=(<class 'bytes'>, <class 'bytearray'>), excluded_types=()), 'boolean': TypeDefinition(name='boolean', included_types=(<class 'bool'>,), excluded_types=()), 'container': TypeDefinition(name='container', included_types=(<class 'collections.abc.Container'>,), excluded_types=(<class 'str'>,)), 'date': TypeDefinition(name='date', included_types=(<class 'datetime.date'>,), excluded_types=()), 'datetime': TypeDefinition(name='datetime', included_types=(<class 'datetime.datetime'>,), excluded_types=()), 'dict': TypeDefinition(name='dict', included_types=(<class 'collections.abc.Mapping'>,), excluded_types=()), 'float': TypeDefinition(name='float', included_types=(<class 'float'>, (<class 'int'>,)), excluded_types=()), 'integer': TypeDefinition(name='integer', included_types=((<class 'int'>,),), excluded_types=()), 'list': TypeDefinition(name='list', included_types=(<class 'collections.abc.Sequence'>,), excluded_types=(<class 'str'>,)), 'number': TypeDefinition(name='number', included_types=((<class 'int'>,), <class 'float'>), excluded_types=(<class 'bool'>,)), 'set': TypeDefinition(name='set', included_types=(<class 'set'>,), excluded_types=()), 'string': TypeDefinition(name='string', included_types=(<class 'str'>,), excluded_types=())}

	This mapping holds all available constraints for the type rule and their assigned
TypeDefinition.

	
validate(document, schema=None, update=False, normalize=True)

	Normalizes and validates a mapping against a validation-schema of defined rules.

	Parameters:

	
	document (any mapping [https://docs.python.org/3/glossary.html#term-mapping]) – The document to normalize.

	schema (any mapping [https://docs.python.org/3/glossary.html#term-mapping]) – The validation schema. Defaults to None [https://docs.python.org/3/library/constants.html#None]. If not
provided here, the schema must have been provided at
class instantiation.

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, required fields won’t be checked.

	normalize (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, normalize the document before validation.

	Returns:

	True if validation succeeds, otherwise False. Check
the errors() property for a list of processing errors.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
validated(*args, **kwargs)

	Wrapper around validate() that returns the normalized
and validated document or None [https://docs.python.org/3/library/constants.html#None] if validation failed.

Rules Set & Schema Registry

	
class cerberus.schema.Registry(definitions={})

	A registry to store and retrieve schemas and parts of it by a name that can be used
in validation schemas.

	Parameters:

	definitions (any mapping [https://docs.python.org/3/glossary.html#term-mapping]) – Optional, initial definitions.

	
add(name, definition)

	Register a definition to the registry. Existing definitions are replaced
silently.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name which can be used as reference in a validation
schema.

	definition (any mapping [https://docs.python.org/3/glossary.html#term-mapping]) – The definition.

	
all()

	Returns a dict [https://docs.python.org/3/library/stdtypes.html#dict] with all registered definitions mapped to their name.

	
clear()

	Purge all definitions in the registry.

	
extend(definitions)

	Add several definitions at once. Existing definitions are
replaced silently.

	Parameters:

	definitions (a mapping [https://docs.python.org/3/glossary.html#term-mapping] or an iterable [https://docs.python.org/3/glossary.html#term-iterable] with
two-value tuple [https://docs.python.org/3/library/stdtypes.html#tuple] s) – The names and definitions.

	
get(name, default=None)

	Retrieve a definition from the registry.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The reference that points to the definition.

	default – Return value if the reference isn’t registered.

	
remove(*names)

	Unregister definitions from the registry.

	Parameters:

	names – The names of the definitions that are to be
unregistered.

Type Definitions

	
class cerberus.TypeDefinition(name, included_types, excluded_types)

	This class is used to define types that can be used as value in the
types_mapping property.
The name should be descriptive and match the key it is going to be assigned
to.
A value that is validated against such definition must be an instance of any of
the types contained in included_types and must not match any of the types
contained in excluded_types.

Error Handlers

	
class cerberus.errors.BaseErrorHandler(*args, **kwargs)

	Base class for all error handlers.
Subclasses are identified as error-handlers with an instance-test.

	
__call__(errors)

	Returns errors in a handler-specific format.

	Parameters:

	errors (iterable [https://docs.python.org/3/glossary.html#term-iterable] of
ValidationError instances or a
Validator instance) – An object containing the errors.

	
__init__(*args, **kwargs)

	Optionally initialize a new instance.

	
__iter__()

	Be a superhero and implement an iterator over errors.

	
__weakref__

	list of weak references to the object (if defined)

	
add(error)

	Add an error to the errors’ container object of a handler.

	Parameters:

	error (ValidationError) – The error to add.

	
emit(error)

	Optionally emits an error in the handler’s format to a stream. Or light a LED,
or even shut down a power plant.

	Parameters:

	error (ValidationError) – The error to emit.

	
end(validator)

	Gets called when a validation ends.

	Parameters:

	validator (Validator) – The calling validator.

	
extend(errors)

	Adds all errors to the handler’s container object.

	Parameters:

	errors (iterable [https://docs.python.org/3/glossary.html#term-iterable] of
ValidationError instances) – The errors to add.

	
start(validator)

	Gets called when a validation starts.

	Parameters:

	validator (Validator) – The calling validator.

	
class cerberus.errors.BasicErrorHandler(tree=None)

	Models cerberus’ legacy. Returns a dict [https://docs.python.org/3/library/stdtypes.html#dict]. When mangled through str [https://docs.python.org/3/library/stdtypes.html#str]
a pretty-formatted representation of that tree is returned.

Python Error Representations

	
class cerberus.errors.ErrorDefinition(code, rule)

	This class is used to define possible errors. Each distinguishable error is
defined by a unique error code as integer and the rule that can
cause it as string.
The instances’ names do not contain a common prefix as they are supposed to be
referenced within the module namespace, e.g. errors.CUSTOM.

	
class cerberus.errors.ValidationError(document_path, schema_path, code, rule, constraint, value, info)

	A simple class to store and query basic error information.

	
property child_errors

	A list that contains the individual errors of a bulk validation error.

	
code

	The error’s identifier code. Type: int [https://docs.python.org/3/library/functions.html#int]

	
constraint

	The constraint that failed.

	
property definitions_errors

	Dictionary with errors of an *of-rule mapped to the index of the definition it
occurred in. Returns None [https://docs.python.org/3/library/constants.html#None] if not applicable.

	
document_path

	The path to the field within the document that caused the error.
Type: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property field

	Field of the contextual mapping, possibly None [https://docs.python.org/3/library/constants.html#None].

	
info

	May hold additional information about the error.
Type: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property is_group_error

	True for errors of bulk validations.

	
property is_logic_error

	True for validation errors against different schemas with *of-rules.

	
property is_normalization_error

	True for normalization errors.

	
rule

	The rule that failed. Type: string

	
schema_path

	The path to the rule within the schema that caused the error.
Type: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
value

	The value that failed.

Error Codes

Its code attribute uniquely identifies an
ErrorDefinition that is used a concrete error’s
code.
Some codes are actually reserved to mark a shared property of different errors.
These are useful as bitmasks while processing errors. This is the list of the
reserved codes:

	0110 0000

	0x60

	96

	An error that occurred during normalization.

	1000 0000

	0x80

	128

	An error that contains child errors.

	1001 0000

	0x90

	144

	An error that was emitted by one of the *of-rules.

None of these bits in the upper nibble must be used to enumerate error
definitions, but only to mark one with the associated property.

Important

Users are advised to set bit 8 for self-defined errors. So the code
0001 0000 0001 / 0x101 would the first in a domain-specific set of
error definitions.

This is a list of all error defintions that are shipped with the
errors module:

	Code (dec.)

	Code (hex.)

	Name

	Rule

	0

	0x0

	CUSTOM

	None

	2

	0x2

	REQUIRED_FIELD

	required

	3

	0x3

	UNKNOWN_FIELD

	None

	4

	0x4

	DEPENDENCIES_FIELD

	dependencies

	5

	0x5

	DEPENDENCIES_FIELD_VALUE

	dependencies

	6

	0x6

	EXCLUDES_FIELD

	excludes

	34

	0x22

	EMPTY_NOT_ALLOWED

	empty

	35

	0x23

	NOT_NULLABLE

	nullable

	36

	0x24

	BAD_TYPE

	type

	37

	0x25

	BAD_TYPE_FOR_SCHEMA

	schema

	38

	0x26

	ITEMS_LENGTH

	items

	39

	0x27

	MIN_LENGTH

	minlength

	40

	0x28

	MAX_LENGTH

	maxlength

	65

	0x41

	REGEX_MISMATCH

	regex

	66

	0x42

	MIN_VALUE

	min

	67

	0x43

	MAX_VALUE

	max

	68

	0x44

	UNALLOWED_VALUE

	allowed

	69

	0x45

	UNALLOWED_VALUES

	allowed

	70

	0x46

	FORBIDDEN_VALUE

	forbidden

	71

	0x47

	FORBIDDEN_VALUES

	forbidden

	72

	0x48

	MISSING_MEMBERS

	contains

	96

	0x60

	NORMALIZATION

	None

	97

	0x61

	COERCION_FAILED

	coerce

	98

	0x62

	RENAMING_FAILED

	rename_handler

	99

	0x63

	READONLY_FIELD

	readonly

	100

	0x64

	SETTING_DEFAULT_FAILED

	default_setter

	128

	0x80

	ERROR_GROUP

	None

	129

	0x81

	MAPPING_SCHEMA

	schema

	130

	0x82

	SEQUENCE_SCHEMA

	schema

	131

	0x83

	KEYSRULES

	keysrules

	131

	0x83

	KEYSCHEMA

	keysrules

	132

	0x84

	VALUESRULES

	valuesrules

	132

	0x84

	VALUESCHEMA

	valuesrules

	143

	0x8f

	BAD_ITEMS

	items

	144

	0x90

	LOGICAL

	None

	145

	0x91

	NONEOF

	noneof

	146

	0x92

	ONEOF

	oneof

	147

	0x93

	ANYOF

	anyof

	148

	0x94

	ALLOF

	allof

Error Containers

	
class cerberus.errors.ErrorList(iterable=(), /)

	A list for ValidationError instances that can be queried
with the in keyword for a particular ErrorDefinition.

	
class cerberus.errors.ErrorTree(errors=())

	Base class for DocumentErrorTree and
SchemaErrorTree.

	
add(error)

	Add an error to the tree.

	Parameters:

	error – ValidationError

	
fetch_errors_from(path)

	Returns all errors for a particular path.

	Parameters:

	path – tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of hashable [https://docs.python.org/3/glossary.html#term-hashable] s.

	Return type:

	ErrorList

	
fetch_node_from(path)

	Returns a node for a path.

	Parameters:

	path – Tuple of hashable [https://docs.python.org/3/glossary.html#term-hashable] s.

	Return type:

	ErrorTreeNode or None [https://docs.python.org/3/library/constants.html#None]

	
class cerberus.errors.DocumentErrorTree(errors=())

	Implements a dict-like class to query errors by indexes following the structure of a
validated document.

	
class cerberus.errors.SchemaErrorTree(errors=())

	Implements a dict-like class to query errors by indexes following the structure of
the used schema.

Exceptions

	
exception cerberus.SchemaError

	Raised when the validation schema is missing, has the wrong format or contains
errors.

	
exception cerberus.DocumentError

	Raised when the target document is missing or has the wrong format

Utilities

	
class cerberus.utils.TypeDefinition(name, included_types, excluded_types)

	This class is used to define types that can be used as value in the
types_mapping property.
The name should be descriptive and match the key it is going to be assigned
to.
A value that is validated against such definition must be an instance of any of
the types contained in included_types and must not match any of the types
contained in excluded_types.

	
excluded_types

	Alias for field number 2

	
included_types

	Alias for field number 1

	
name

	Alias for field number 0

	
cerberus.utils.mapping_to_frozenset(mapping)

	Be aware that this treats any sequence type with the equal members as equal. As it
is used to identify equality of schemas, this can be considered okay as definitions
are semantically equal regardless the container type.

	
class cerberus.utils.readonly_classproperty(fget=None, fset=None, fdel=None, doc=None)

	

	
cerberus.utils.validator_factory(name, bases=None, namespace={})

	Dynamically create a Validator subclass.
Docstrings of mixin-classes will be added to the resulting class’ one if __doc__
is not in namespace.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the new class.

	bases (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of or a single class [https://docs.python.org/3/glossary.html#term-class]) – Class(es) with additional and overriding attributes.

	namespace (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Attributes for the new class.

	Returns:

	The created class.

Schema Validation Schema

Against this schema validation schemas given to a vanilla
Validator will be validated:

{'allof': {'logical': 'allof', 'type': 'list'},
'allow_unknown': {'oneof': [{'type': 'boolean'},
 {'check_with': 'bulk_schema',
 'type': ['dict', 'string']}]},
'allowed': {'type': 'container'},
'anyof': {'logical': 'anyof', 'type': 'list'},
'check_with': {'oneof': [{'type': 'callable'},
 {'schema': {'oneof': [{'type': 'callable'},
 {'allowed': (),
 'type': 'string'}]},
 'type': 'list'},
 {'allowed': (), 'type': 'string'}]},
'coerce': {'oneof': [{'type': 'callable'},
 {'schema': {'oneof': [{'type': 'callable'},
 {'allowed': (),
 'type': 'string'}]},
 'type': 'list'},
 {'allowed': (), 'type': 'string'}]},
'contains': {'empty': False},
'default': {'nullable': True},
'default_setter': {'oneof': [{'type': 'callable'},
 {'allowed': (), 'type': 'string'}]},
'dependencies': {'check_with': 'dependencies',
 'type': ('dict', 'hashable', 'list')},
'empty': {'type': 'boolean'},
'excludes': {'schema': {'type': 'hashable'},
 'type': ('hashable', 'list')},
'forbidden': {'type': 'list'},
'items': {'check_with': 'items', 'type': 'list'},
'keysrules': {'check_with': 'bulk_schema',
 'forbidden': ['rename', 'rename_handler'],
 'type': ['dict', 'string']},
'max': {'nullable': False},
'maxlength': {'type': 'integer'},
'meta': {},
'min': {'nullable': False},
'minlength': {'type': 'integer'},
'noneof': {'logical': 'noneof', 'type': 'list'},
'nullable': {'type': 'boolean'},
'oneof': {'logical': 'oneof', 'type': 'list'},
'purge_unknown': {'type': 'boolean'},
'readonly': {'type': 'boolean'},
'regex': {'type': 'string'},
'rename': {'type': 'hashable'},
'rename_handler': {'oneof': [{'type': 'callable'},
 {'schema': {'oneof': [{'type': 'callable'},
 {'allowed': (),
 'type': 'string'}]},
 'type': 'list'},
 {'allowed': (), 'type': 'string'}]},
'require_all': {'type': 'boolean'},
'required': {'type': 'boolean'},
'schema': {'anyof': [{'check_with': 'schema'},
 {'check_with': 'bulk_schema'}],
 'type': ['dict', 'string']},
'type': {'check_with': 'type', 'type': ['string', 'list']},
'valuesrules': {'check_with': 'bulk_schema',
 'forbidden': ['rename', 'rename_handler'],
 'type': ['dict', 'string']}}

Frequently Asked Questions

Can I use Cerberus to validate objects?

Yes. See Validating user objects with Cerberus [https://nicolaiarocci.com/validating-user-objects-cerberus/].

Are Cerberus validators thread-safe, can they be used in different threads?

The normalization and validation methods of validators make a copy of the
provided document and store it as document
property. Because of this it is advised to create a new
Validator instance for each processed document when used in
a multi-threaded context. Alternatively you can use a
threading.Lock [https://docs.python.org/3/library/threading.html#threading.Lock] to confirm that only one document processing is
running at any given time.

External resources

Here are some recommended resources that deal with Cerberus.
If you find something interesting on the web, please amend it to this document
and open a pull request (see How to Contribute).

Community forums

There’s a cerberus tag [https://stackoverflow.com/questions/tagged/cerberus]
on the Question & Answers platform Stackoverflow. The
Google Group [https://groups.google.com/forum/?hl=en#!forum/python-eve]
regarding the mother project Eve may also a spot to seek these.

7 Best Python Libraries For Validating Data (February 2018)

Clickbait [https://www.yeahhub.com/7-best-python-libraries-validating-data/]
that mentions Cerberus. It’s a starting point to compare libraries with a
similar scope though.

Nicola Iarocci: Cerberus, or Data Validation for Humans (November 2017)

Get fastened for the full tour on Cerberus that Nicola gave in a
talk [https://www.youtube.com/watch?v=vlHAjIPvoT4] at PiterPy 2017.
No bit is missed, so don’t miss it!
The talk also includes a sample of the actual pronunciation of Iarocci as
extra takeaway.

Henry Ölsner: Validate JSON data using cerberus (March 2016)

In this blog post [https://codingnetworker.com/2016/03/validate-json-data-using-cerberus/]
the author describes how to validate network configurations with a schema noted
in YAML. The article that doesn’t spare on code snippets develops the
resulting schema by gradually increasing its complexity. A custom type check is
also implemented, but be aware that version 0.9.2 is used. With 1.0 and later
the implementation should look like this:

def _validate_type_ipv4address(self, value):
 try:
 ipaddress.IPv4Address(value)
 except:
 return False
 else:
 return True

Cerberus Changelog

Cerberus is a collaboratively funded project, see the funding page [https://docs.python-cerberus.org/en/stable/funding.html].

Version 1.3.5

Released on August 9, 2023.

New

	Support for Python 3.10 & 3.11

	The HTML documentation uses the furo theme

Fixed

	*of rules are skipped for None values (#582 [https://github.com/pyeve/cerberus/issues/582])

	Validations of mappings would raise an exception when the field’s rules were
provided as reference to a registry item (#599 [https://github.com/pyeve/cerberus/issues/599])

Improved

	Various minor improvements of the documentation

Version 1.3.4

Released on May 5, 2021.

Fixed

	Reverts the unsatisfying fix for #557 [https://github.com/pyeve/cerberus/issues/557],

	instead a RuntimeError is thrown when Python is running with optimization
level 2 (#567 [https://github.com/pyeve/cerberus/issues/567])

Version 1.3.3

Released on April 11, 2021.

New

	Adds a benchmark to observe overall performance between code changes (#531 [https://github.com/pyeve/cerberus/issues/531])

	Adds support for Python 3.9

	The Continuous Integration now runs on GitHub Actions

Fixed

	Fixed unresolved registry references when getting a constraint for an error
(#562 [https://github.com/pyeve/cerberus/issues/562])

	Fixed crash when submitting non-hashable values to allowed (#524 [https://github.com/pyeve/cerberus/issues/524])

	Fixed schema validation for rules specifications with space (#527 [https://github.com/pyeve/cerberus/issues/527])

	Replaced deprecated rule name validator with check_with in the docs
(#527 [https://github.com/pyeve/cerberus/issues/527])

	Use the UnconcernedValidator when the Python interpreter is executed with
an optimization flag (#557 [https://github.com/pyeve/cerberus/issues/557])

	Several fixes and refinements of the docs

Version 1.3.2

Released on October 29, 2019.

New

	Support for Python 3.8

Fixed

	Fixed the message of the BasicErrorHandler for an invalid amount of items
(#505 [https://github.com/pyeve/cerberus/issues/505])

	Added setuptools as dependency to the package metadata (#499 [https://github.com/pyeve/cerberus/issues/499])

	The CHANGES.rst document is properly included in the package (#493 [https://github.com/pyeve/cerberus/issues/493])

Improved

	Docs: Examples were added for the min- and maxlength rules. (#509 [https://github.com/pyeve/cerberus/issues/509])

Version 1.3.1

Releases on May 10, 2019.

Fixed

	Fixed the expansion of the deprecated rule names keyschema and
valueschema (#482 [https://github.com/pyeve/cerberus/issues/482])

	*of_-typesavers properly expand rule names containing _ (#484 [https://github.com/pyeve/cerberus/issues/484])

Improved

	Add maintainer and maintainer_email to setup.py (#481 [https://github.com/pyeve/cerberus/issues/481])

	Add project_urls to setup.py (#480 [https://github.com/pyeve/cerberus/issues/480])

	Don’t ignore all exceptions during coercions for nullable fields. If a

	Coercion raises an exception for a nullable field where the field is not
None the validation now fails. (#490 [https://github.com/pyeve/cerberus/issues/490])

Version 1.3

Releases on April 30, 2019.

New

	Add require_all rule and validator argument (#417 [https://github.com/pyeve/cerberus/issues/417])

	The contains rule (#358 [https://github.com/pyeve/cerberus/issues/358])

	All fields that are defined as readonly are removed from a document
when a validator has the purge_readonly flag set to True (#240 [https://github.com/pyeve/cerberus/issues/240])

	The validator rule is renamed to check_with. The old name is
deprecated and will not be available in the next major release of Cerberus
(#405 [https://github.com/pyeve/cerberus/issues/405])

	The rules keyschema and valueschema are renamed to keysrules and
valuesrules; the old names are deprecated and will not be available in
the next major release of Cerbers (#385 [https://github.com/pyeve/cerberus/issues/385])

	The meta pseudo-rule can be used to store arbitrary application data
related to a field in a schema

	Python 3.7 officially supported (#451 [https://github.com/pyeve/cerberus/pull/451])

	Python 2.6 and 3.3 are no longer supported

Fixed

	Fix test test_{default,default_setter}_none_nonnullable (#435 [https://github.com/pyeve/cerberus/pull/435])

	Normalization rules defined within the items rule are applied (#361 [https://github.com/pyeve/cerberus/pull/361])

	Defaults are applied to undefined fields from an allow_unknown
definition (#310 [https://github.com/pyeve/cerberus/issues/310])

	The forbidden value now handles any input type (#449 [https://github.com/pyeve/cerberus/pull/449])

	The allowed rule will not be evaluated on fields that have a legit None
value (#454 [https://github.com/pyeve/cerberus/issues/454])

	If the cerberus distribution cannot not be found, the version is set to the
value unknown (#472 [https://github.com/pyeve/cerberus/pull/472])

Improved

	Suppress DeprecationWarning about collections.abc (#451 [https://github.com/pyeve/cerberus/pull/451])

	Omit warning when no schema for meta rule constraint is available
(#425 [https://github.com/pyeve/cerberus/pull/425])

	Add .eggs to .gitignore file (#420 [https://github.com/pyeve/cerberus/issues/420])

	Reformat code to match Black code-style (#402 [https://github.com/pyeve/cerberus/issues/402])

	Perform lint checks and fixes on staged files, as a pre-commit hook (#402 [https://github.com/pyeve/cerberus/issues/402])

	Change allowed rule to use containers instead of lists (#384 [https://github.com/pyeve/cerberus/issues/384])

	Remove Registry from top level namespace (#354 [https://github.com/pyeve/cerberus/issues/354])

	Remove utils.is_class

	Check the empty rule against values of type Sized

	Various micro optimizations and ‘safety belts’ that were inspired by adding
type annotations to a branch of the code base

Docs

	Fix semantical versioning naming. There are only two hard things in Computer
Science: cache invalidation and naming things – Phil Karlton (#429 [https://github.com/pyeve/cerberus/pull/429])

	Improve documentation of the regex rule (#389 [https://github.com/pyeve/cerberus/issues/389])

	Expand upon validator rules (#320 [https://github.com/pyeve/cerberus/issues/320])

	Include all errors definitions in API docs (#404 [https://github.com/pyeve/cerberus/issues/404])

	Improve changelog format (#406 [https://github.com/pyeve/cerberus/issues/406])

	Update homepage URL in package metadata (#382 [https://github.com/pyeve/cerberus/issues/382])

	Add feature freeze note to CONTRIBUTING and note on Python support in
README

	Add the intent of a dataclasses module to ROADMAP.md

	Update README link; make it point to the new PyPI website

	Update README with elaborations on versioning and testing

	Fix misspellings and missing pronouns

	Remove redundant hint from *of-rules.

	Add usage recommendation regarding the *of-rules

	Add a few clarifications to the GitHub issue template

	Update README link; make it point to the new PyPI website

Version 1.2

Released on April 12, 2018.

	New: docs: Add note that normalization cannot be applied within an *of-rule.
(Frank Sachsenheim)

	New: Add the ability to query for a type of error in an error tree.
(Frank Sachsenheim)

	New: Add errors.MAPPING_SCHEMA on errors within subdocuments.
(Frank Sachsenheim)

	New: Support for Types Definitions, which allow quick types check on the fly.
(Frank Sachsenheim)

	Fix: Simplify the tests with Docker by using a volume for tox environments.
(Frank Sachsenheim)

	Fix: Schema registries do not work on dict fields.
Closes #318 [https://github.com/pyeve/cerberus/issues/318]. (Frank Sachsenheim)

	Fix: Need to drop some rules when empty is allowed.
Closes #326 [https://github.com/pyeve/cerberus/issues/326]. (Frank Sachsenheim)

	Fix: typo in README (Christian Hogan)

	Fix: Make purge_unknown and allow_unknown play nice together.
Closes #324 [https://github.com/pyeve/cerberus/issues/324]. (Audric Schiltknecht)

	Fix: API reference lacks generated content.
Closes #281 [https://github.com/pyeve/cerberus/issues/281]. (Frank Sachsenheim)

	Fix: readonly works properly just in the first validation.
Closes #311 [https://github.com/pyeve/cerberus/issues/311]. (Frank Sachsenheim)

	Fix: coerce ignores nullable: True.
Closes #269 [https://github.com/pyeve/cerberus/issues/269]. (Frank Sachsenheim)

	Fix: A dependency is not considered satisfied if it has a null value.
Closes #305 [https://github.com/pyeve/cerberus/issues/305]. (Frank Sachsenheim)

	Override UnvalidatedSchema.copy. (Peter Demin)

	Fix: README link. (Gabriel Wainer)

	Fix: Regression: allow_unknown causes dictionary validation to fail with
a KeyError. Closes #302 [https://github.com/pyeve/cerberus/issues/302]. (Frank Sachsenheim)

	Fix: Error when setting fields as tuples instead of lists.
Closes #271 [https://github.com/pyeve/cerberus/issues/271]. (Sebastian Rajo)

	Fix: Correctly handle nested logic and group errors.
Closes #278 [https://github.com/pyeve/cerberus/issues/278] and #299 [https://github.com/pyeve/cerberus/issues/299]. (Kornelijus Survila)

	CI: Reactivate testing on PyPy3. (Frank Sachsenheim)

Version 1.1

Released on January 25, 2017.

	New: Python 3.6 support. (Frank Sachsenheim)

	New: Users can implement their own semantics in Validator._lookup_field.
(Frank Sachsenheim)

	New: Allow applying of empty rule to sequences and mappings.
Closes #270 [https://github.com/pyeve/cerberus/issues/270]. (Frank Sachsenheim)

	Fix: Better handling of unicode in allowed rule.
Closes #280 [https://github.com/pyeve/cerberus/issues/280]. (Michael Klich).

	Fix: Rules sets with normalization rules fail.
Closes #283 [https://github.com/pyeve/cerberus/issues/283]. (Frank Sachsenheim)

	Fix: Spelling error in RULE_SCHEMA_SEPARATOR constant (Antoine Lubineau)

	Fix: Expand schemas and rules sets when added to a registry. Closes #284 [https://github.com/pyeve/cerberus/issues/284]
(Frank Sachsenheim)

	Fix: readonly conflicts with default rule. Closes #268 [https://github.com/pyeve/cerberus/issues/268] (Dominik
Kellner).

	Fix: Creating custom Validator instance with _validator_* method raises
SchemaError. Closes #265 [https://github.com/pyeve/cerberus/issues/265] (Frank Sachsenheim).

	Fix: Consistently use new style classes (Dominik Kellner).

	Fix: NotImplemented does not derive from BaseException. (Bryan W.
Weber).

	Completely switch to py.test. Closes #213 [https://github.com/pyeve/cerberus/issues/213] (Frank Sachsenheim).

	Convert self.assert method calls to plain assert calls supported by
pytest. Addresses #213 [https://github.com/pyeve/cerberus/issues/213] (Bruno Oliveira).

	Docs: Clarifications concerning dependencies and unique rules. (Frank
Sachsenheim)

	Docs: Fix custom coerces documentation. Closes #285 [https://github.com/pyeve/cerberus/issues/285]. (gilbsgilbs)

	Docs: Add note concerning regex flags. Closes #173 [https://github.com/pyeve/cerberus/issues/173]. (Frank Sachsenheim)

	Docs: Explain that normalization and coercion are performed on a copy of the
original document (Sergey Leshchenko)

Version 1.0.1

Released on September 1, 2016.

	Fix: bump trove classifier to Production/Stable (5).

Version 1.0

Released on September 1, 2016.

Warning

This is a major release which breaks backward compatibility in several
ways. Don’t worry, these changes are for the better. However, if you are
upgrading, then you should really take the time to read the list of
Breaking Changes and consider their impact on your codebase. For your
convenience, some upgrade notes have been included.

	New: Add capability to use references in schemas. (Frank Sachsenheim)

	New: Support for binary type. (Matthew Ellison)

	New: Allow callables for ‘default’ schema rule. (Dominik Kellner)

	New: Support arbitrary types with ‘max’ and ‘min’ (Frank Sachsenheim).

	New: Support any iterable with ‘minlength’ and ‘maxlength’.
Closes #158 [https://github.com/pyeve/cerberus/issues/158]. (Frank Sachsenheim)

	New: ‘default’ normalization rule. Closes #131 [https://github.com/pyeve/cerberus/issues/131]. (Damián Nohales)

	New: ‘excludes’ rule (calve). Addresses #132 [https://github.com/pyeve/cerberus/issues/132].

	New: ‘forbidden’ rule. (Frank Sachsenheim)

	New: ‘rename’-rule renames a field to a given value during normalization
(Frank Sachsenheim).

	New: ‘rename_handler’-rule that takes an callable that renames unknown
fields. (Frank Sachsenheim)

	New: ‘Validator.purge_unknown’-property and conditional purging of unknown
fields. (Frank Sachsenheim)

	New: ‘coerce’, ‘rename_handler’ and ‘validator’ can use class-methods (Frank
Sachsenheim).

	New: ‘*of’-rules can be extended by concatenating another rule. (Frank
Sachsenheim)

	New: Allows various error output with error handlers (Frank Sachsenheim).

	New: Available rules etc. of a Validator-instance are accessible as
‘validation_rules’, ‘normalization_rules’, ‘types’, ‘validators’ and
‘coercer’ -property. (Frank Sachsenheim)

	New: Custom rule’s method docstrings can contain an expression to validate
constraints for that rule when a schema is validated. (Frank Sachsenheim).

	New: ‘Validator.root_schema’ complements ‘Validator.root_document’. (Frank
Sachsenheim)

	New: ‘Validator.document_path’ and ‘Validator.schema_path’ properties can
be used to determine the relation of the currently validating document to the
‘root_document’ / ‘root_schema’. (Frank Sachsenheim)

	New: Known, validated definition schemas are cached, thus validation run-time
of schemas is reduced. (Frank Sachsenheim)

	New: Add testing with Docker. (Frank Sachsenheim)

	New: Support CPython 3.5. (Frank Sachsenheim)

	Fix: ‘allow_unknown’ inside *of rule is ignored. Closes #251. (Davis
Kirkendall)

	Fix: unexpected TypeError when using allow_unknown in a schema defining
a list of dicts. Closes #250 [https://github.com/pyeve/cerberus/issues/250]. (Davis Kirkendall)

	Fix: validate with ‘update=True’ does not work when required fields are in
a list of subdicts. (Jonathan Huot)

	Fix: ‘number’ type fails if value is boolean.
Closes #144 [https://github.com/pyeve/cerberus/issues/144]. (Frank Sachsenheim)

	Fix: allow None in ‘default’ normalization rule. (Damián Nohales)

	Fix: in 0.9.2, coerce does not maintain proper nesting on dict fields. Closes
#185 [https://github.com/pyeve/cerberus/issues/185].

	Fix: normalization not working for valueschema and propertyschema. Closes
#155 [https://github.com/pyeve/cerberus/issues/155]. (Frank Sachsenheim)

	Fix: ‘coerce’ on List elements produces unexpected results.
Closes #161 [https://github.com/pyeve/cerberus/issues/161]. (Frank Sachsenheim)

	Fix: ‘coerce’-constraints are validated. (Frank Sachsenheim)

	Fix: Unknown fields are normalized. (Frank Sachsenheim)

	Fix: Dependency on boolean field now works as expected.
Addresses #138 [https://github.com/pyeve/cerberus/issues/138]. (Roman Redkovich)

	Fix: Add missing deprecation-warnings. (Frank Sachsenheim)

	Docs: clarify read-only rule. Closes #127 [https://github.com/pyeve/cerberus/issues/127].

	Docs: split Usage page into Usage; Validation Rules: Normalization Rules.
(Frank Sachsenheim)

Breaking Changes

Several relevant breaking changes have been introduced with this release. For
the inside scoop, please see the upgrade notes.

	Change: ‘errors’ values are lists containing error messages. Previously, they
were simple strings if single errors, lists otherwise.
Closes #210 [https://github.com/pyeve/cerberus/issues/210]. (Frank Sachsenheim)

	Change: Custom validator methods: remove the second argument.
(Frank Sachsenheim)

	Change: Custom validator methods: invert the logic of the conditional clauses
where is tested what a value is not / has not. (Frank Sachsenheim)

	Change: Custom validator methods: replace calls to ‘self._error’ with
‘return True’, or False, or None. (Frank Sachsenheim)

	Change: Remove ‘transparent_schema_rule’ in favor of docstring schema
validation. (Frank Sachsenheim)

	Change: Rename ‘property_schema’ rule to ‘keyschema’. (Frank Sachsenheim)

	Change: Replace ‘validate_update’ method with ‘update’ keywork argument.
(Frank Sachsenheim)

	Change: The processed root-document of is now available as ‘root_document’-
property of the (child-)Validator. (Frank Sachsenheim)

	Change: Removed ‘context’-argument from ‘validate’-method as this is set
upon the creation of a child-validator. (Frank Sachsenheim)

	Change: ‘ValidationError’-exception renamed to ‘DocumentError’.
(Frank Sachsenheim)

	Change: Consolidated all schema-related error-messages’ names.
(Frank Sachsenheim)

	Change: Use warnings.warn for deprecation-warnings if available.
(Frank Sachsenheim)

Version 0.9.2

Released on September 23, 2015

	Fix: don’t rely on deepcopy since it can’t properly handle complex objects in
Python 2.6.

Version 0.9.1

Released on July 7 2015

	Fix: ‘required’ is always evaluated, independent of eventual missing
dependencies. This changes the previous behaviour whereas a required field
with dependencies would only be reported as missing if all dependencies were
met. A missing required field will always be reported. Also see the
discussion in https://github.com/pyeve/eve/pull/665.

Version 0.9

Released on June 24 2015.
Codename: ‘Mastrolindo’.

	New: ‘oneof’ rule which provides a list of definitions in which only one
should validate (C.D. Clark III).

	New: ‘noneof’ rule which provides a list of definitions that should all not
validate (C.D. Clark III).

	New: ‘anyof’ rule accepts a list of definitions and checks that one
definition validates (C.D. Clark III).

	New: ‘allof’ rule validates if if all definitions validate (C.D. Clark III).

	New: ‘validator.validated’ takes a document as argument and returns
a validated document or ‘None’ if validation failed (Frank Sachsenheim).

	New: PyPy support (Frank Sachsenheim).

	New: Type coercion (Brett).

	New: Added ‘propertyschema’ validation rule (Frank Sachsenheim).

	Change: Use ‘str.format’ in error messages so if someone wants to override
them does not get an exception if arguments are not passed.
Closes #105 [https://github.com/pyeve/cerberus/issues/105]. (Brett)

	Change: ‘keyschema’ renamed to ‘valueschema’, print a deprecation warning
(Frank Sachsenheim).

	Change: ‘type’ can also be a list of types (Frank Sachsenheim).

	Fix: useages of ‘document’ to ‘self.document’ in ‘_validate’ (Frank
Sachsenheim).

	Fix: when ‘items’ is applied to a list, field name is used as key for
‘validator.errors’, and offending field indexes are used as keys for field
errors ({‘a_list_of_strings’: {1: ‘not a string’}}) ‘type’ can be a list of
valid types.

	Fix: Ensure that additional **kwargs of a subclass persist through
validation (Frank Sachsenheim).

	Fix: improve failure message when testing against multiple types (Frank
Sachsenheim).

	Fix: ignore ‘keyschema’ when not a mapping (Frank Sachsenheim).

	Fix: ignore ‘schema’ when not a sequence (Frank Sachsenheim).

	Fix: allow_unknown can also be set for nested dicts.
Closes #75 [https://github.com/pyeve/cerberus/issues/75]. (Tobias Betz)

	Fix: raise SchemaError when an unallowed ‘type’ is used in conjunction with
‘schema’ rule (Tobias Betz).

	Docs: added section that points out that YAML, JSON, etc. can be used to
define schemas (C.D. Clark III).

	Docs: Improve ‘allow_unknown’ documentation (Frank Sachsenheim).

Version 0.8.1

Released on Mar 16 2015.

	Fix: dependency on a sub-document field does not work. Closes #64 [https://github.com/pyeve/cerberus/issues/64].

	Fix: readonly validation should happen before any other validation.
Closes #63 [https://github.com/pyeve/cerberus/issues/63].

	Fix: allow_unknown does not apply to sub-dictionaries in a list.
Closes #67 [https://github.com/pyeve/cerberus/issues/67].

	Fix: two tests being ignored because of name typo.

	Fix: update mode does not ignore required fields in subdocuments.
Closes #72 [https://github.com/pyeve/cerberus/issues/72].

	Fix: allow_unknown does not respect custom rules. Closes #66 [https://github.com/pyeve/cerberus/issues/66].

	Fix: typo in docstrings (Riccardo).

Version 0.8

Released on Jan 7 2015.

	‘dependencies’ also supports dependency values.

	‘allow_unknown’ can also be set to a validation schema, in which case unknown
fields will be validated against it. Closes pyeve/eve:issue:405.

	New function-based custom validation mode (Luo Peng).

	Fields with empty definitions in schema were reported as non-existent. Now
they are considered as valid, whatever their value is (Jaroslav Semančík).

	If dependencies are precised for a ‘required’ field, then the presence of the
field is only validated if all dependencies are present (Trong Hieu HA).

	Documentation typo (Nikita Vlaznev #55 [https://github.com/pyeve/cerberus/issues/55]).

	[CI] Add travis_retry to pip install in case of network issues (Helgi Þormar
Þorbjörnsson #49 [https://github.com/pyeve/cerberus/issues/49])

Version 0.7.2

Released on Jun 19 2014.

	Successfully validate int as float type (Florian Rathgeber).

Version 0.7.1

Released on Jun 17 2014.

	Validation schemas are now validated up-front. When you pass a Schema to the
Validator it will be validated against the supported ruleset (Paul Weaver).
Closes #39 [https://github.com/pyeve/cerberus/issues/39].

	Custom validators also have access to a special ‘self.document’ variable that
allows validation of a field to happen in context of the rest of the document
(Josh Villbrandt).

	Validator options like ‘allow_unknown’ and ‘ignore_none_values’ are now taken
into consideration when validating sub-dictionaries. Closes #40 [https://github.com/pyeve/cerberus/issues/40].

Version 0.7

Released on May 16 2014.

	Python 3.4 is now supported.

	tox support.

	Added ‘dependencies’ validation rule (Lujeni).

	Added ‘keyschema’ validation rule (Florian Rathgeber).

	Added ‘regex’ validation rule. Closes #29 [https://github.com/pyeve/cerberus/issues/29].

	Added ‘set’ as a core data type. Closes #31 [https://github.com/pyeve/cerberus/issues/31].

	Not-nullable fields are validated independetly of their type definition
(Jaroslav Semančík).

	Python trove classifiers added to setup.py. Closes #32 [https://github.com/pyeve/cerberus/issues/32].

	‘min’ and ‘max’ now apply to floats and numbers too. Closes #30 [https://github.com/pyeve/cerberus/issues/30].

Version 0.6

Released on February 10 2014

	Added ‘number’ data type, which validates against both float and integer
values (Brandon Aubie).

	Added support for running tests with py.test

	Fix non-blocking problem introduced with 0.5 (Martin Ortbauer).

	Fix bug when _error() is calld twice for a field (Jaroslav Semančík).

	More precise error message in rule ‘schema’ validation (Jaroslav Semančík).

	Use ‘allowed’ field for integer just like for string (Peter Demin).

Version 0.5

Released on December 4 2013

	‘validator.errors’ now returns a dictionary where keys are document fields
and values are lists of validation errors for the field.

	Validator instances are now callable. Instead of validated
= validator.validate(document) you can now choose to do ‘validated
= validator(document)’ (Eelke Hermens).

Version 0.4.0

Released on September 24 2013.

	‘validate_update’ is deprecated and will be removed with next release. Use
‘validate’ with ‘update=True’ instead. Closes #21 [https://github.com/pyeve/cerberus/issues/21].

	Fixed a minor encoding issue which made installing on Windows/Python3
impossible. Closes #19 [https://github.com/pyeve/cerberus/issues/19] (Arsh Singh).

	Fix documentation typo (Daniele Pizzolli).

	‘type’ validation is always performed first (only exception being
‘nullable’). On failure, subsequent rules on the same field are skipped.
Closes #18 [https://github.com/pyeve/cerberus/issues/18].

Version 0.3.0

Released on July 9 2013.

	docstrings now conform to PEP8.

	self.errors returns an empty list if validate() has not been called.

	added validation for the ‘float’ data type.

	‘nullable’ rule added to allow for null field values to be accepted in
validations. This is different than required in that you can actively change
a value to None instead of omitting or ignoring it. It is essentially the
ignore_none_values, allowing for more fine grained control down to the field
level (Kaleb Pomeroy).

Version 0.2.0

Released on April 18 2013.

	‘allow_unknown’ option added.

Version 0.1.0

Released on March 15 2013.
Codename: ‘Claw’.

	entering beta phase.

	support for Python 3.

	pep8 and pyflakes fixes (Harro van der Klauw).

	removed superflous typecheck for empty validator (Harro van der Klauw).

	‘ignore_none_values’ option to ignore None values when type checking (Harro
van der Klauw).

	‘minlenght’ and ‘maxlength’ now apply to lists as well (Harro van der Klauw).

Version 0.0.3

Released on January 29 2013

	when a list item fails, its offset is now returned along with the list name.

	‘transparent_schema_rules’ option added.

	‘empty’ rule for string fields.

	‘schema’ rule on lists of arbitrary lenght (Martjin Vermaat).

	‘allowed’ rule on strings (Martjin Vermaat).

	‘items’ (dict) is now deprecated. Use the upgraded ‘schema’ rule instead.

	AUTHORS file added to sources.

	CHANGES file added to sources.

Version 0.0.2

Released on November 22 2012.

	Added support for addition and validation of custom data types.

	Several documentation improvements.

Version 0.0.1

Released on October 16 2012.

First public preview release.

Upgrading to Cerberus 1.0

Major Additions

Error Handling

The inspection on and representation of errors is thoroughly overhauled and
allows a more detailed and flexible handling. Make sure you have look on
Errors & Error Handling.

Also, errors (as provided by the default
BasicErrorHandler) values are lists containing
error messages, and possibly a dict as last item containing nested errors.
Previously, they were strings if single errors per field occurred; lists
otherwise.

Deprecations

Validator class

transparent_schema_rules

In the past you could override the schema validation by setting
transparent_schema_rules to True. Now all rules whose implementing
method’s docstring contain a schema to validate the arguments for that rule in the
validation schema, are validated.
To omit the schema validation for a particular rule, just omit that definition,
but consider it a bad practice.
The Validator-attribute and -initialization-argument
transparent_schema_rules are removed without replacement.

validate_update

The method validate_update has been removed from
Validator. Instead use validate()
with the keyword-argument update set to True.

Rules

items (for mappings)

The usage of the items-rule is restricted to sequences.
If you still had schemas that used that rule to validate
mappings [https://docs.python.org/3/glossary.html#term-mapping], just rename these instances to schema
(docs).

keyschema & valueschema

To reflect the common terms in the Pythoniverse [1], the rule for validating
all values of a mapping [https://docs.python.org/3/glossary.html#term-mapping] was renamed from keyschema to
valueschema. Furthermore a rule was implemented to validate all keys,
introduced as propertyschema, now renamed to keyschema. This means code
using prior versions of cerberus would not break, but bring up wrong results!

To update your code you may adapt cerberus’ iteration:

	Rename keyschema to valueschema in your schemas. (0.9)

	Rename propertyschema to keyschema in your schemas. (1.0)

	Note that propertyschema will not be handled as an alias like
	keyschema was in the 0.9-branch.

Custom validators

Data types

Since the type-rule allowed multiple arguments cerberus’ type validation
code was somewhat cumbersome as it had to deal with the circumstance that each
type checking method would file an error though another one may not - and thus
positively validate the constraint as a whole.
The refactoring of the error handling allows cerberus’ type validation to be
much more lightweight and to formulate the corresponding methods in a simpler
way.

Previously such a method would test what a value is not and submit an error.
Now a method tests what a value is to be expected and returns True in
that case.

This is the most critical part of updating your code, but still easy when your
head is clear. Of course your code is well tested. It’s essentially these
three steps. Search, Replace and Regex may come at your service.

	Remove the second method’s argument (probably named field).

	Invert the logic of the conditional clauses where is tested what a value
is not / has not.

	Replace calls to self._error below such clauses with
return True.

A method doesn’t need to return False or any value when expected criteria
are not met.

Here’s the change from the documentation example.

pre-1.0:

def _validate_type_objectid(self, field, value):
 if not re.match('[a-f0-9]{24}', value):
 self._error(field, errors.BAD_TYPE)

1.0:

def _validate_type_objectid(self, value):
 if re.match('[a-f0-9]{24}', value):
 return True

[1]
compare dictionary [https://docs.python.org/3/glossary.html#term-dictionary]

Authors

Cerberus is developed and maintained by the Cerberus community. It was created
by Nicola Iarocci.

Core maintainers

	Nicola Iarocci (nicolaiarocci)

	Frank Sachsenheim (funkyfuture)

Contributors

	Antoine Lubineau

	Arsh Singh

	Audric Schiltknecht

	Brandon Aubie

	Brett

	Bruno Oliveira

	Bryan W. Weber

	C.D. Clark III

	Christian Hogan

	Connor Zapfel

	Damián Nohales

	Danielle Pizzolli

	Davis Kirkendall

	Denis Carriere

	Dominik Kellner

	Eelke Hermens

	Evgeny Odegov

	Florian Rathgeber

	Gabriel Wainer

	Harro van der Klauw

	Jaroslav Semančík

	Jonathan Huot

	Kaleb Pomeroy

	Kirill Pavlov

	Kornelijus Survila

	Lujeni

	Luke Bechtel

	Luo Peng

	Martijn Vermaat

	Martin Ortbauer

	Matthew Ellison

	Michael Klich

	Nik Haldimann

	Nikita Melentev

	Nikita Vlaznev

	Paul Weaver

	Peter Demin

	Riccardo

	Roman Redkovich

	Scott Crunkleton

	Sebastian Heid

	Sebastian Rajo

	Sergey Leshchenko

	Tobias Betz

	Trong Hieu HA

	Vipul Gupta

	Waldir Pimenta

	Yauhen Shulitski

	calve

	gilbsgilbs

A full, up-to-date list of contributors is available from git with:

git shortlog -sne

Contact

If you’ve scoured the prose and API documentation
and still can’t find an answer to your question, below are various support
resources that should help. We do request that you do at least skim the
documentation before posting tickets or mailing list questions, however!

If you’d like to stay up to date on the community and development of Cerberus,
there are several options:

Blog

New releases are usually announced on my Website [https://nicolaiarocci.com/tags/cerberus].

Twitter

I often tweet about new features and releases of Cerberus. Follow @nicolaiarocci [https://twitter.com/nicolaiarocci].

Mailing List

The mailing list [https://groups.google.com/forum/#!forum/python-eve] is intended to be a low traffic resource for users,
developers and contributors of both the Cerberus and Eve projects.

Issues tracker

To file new bugs or search existing ones, you may visit Issues [https://github.com/pyeve/cerberus/issues] page. This
does require a (free and easy to set up) GitHub account.

GitHub repository

Of course the best way to track the development of Cerberus is through the
GitHub repo [https://github.com/pyeve/cerberus].

License

Cerberus is an open source project by Nicola Iarocci [https://nicolaiarocci.com].

ISC License

Copyright (c) 2012-2016 Nicola Iarocci.

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cerberus	

 	
 	
 cerberus.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | V

_

 	
 	__call__() (cerberus.errors.BaseErrorHandler method)

 	__init__() (cerberus.errors.BaseErrorHandler method)

 	__iter__() (cerberus.errors.BaseErrorHandler method)

 	__weakref__ (cerberus.errors.BaseErrorHandler attribute)

 	_drop_remaining_rules() (cerberus.Validator method)

 	
 	_error() (cerberus.Validator method)

 	_errors (cerberus.Validator attribute)

 	_get_child_validator() (cerberus.Validator method)

 	_lookup_field() (cerberus.Validator method)

 	_remaining_rules (cerberus.Validator attribute)

 	_valid_schemas (cerberus.Validator attribute)

A

 	
 	add() (cerberus.errors.BaseErrorHandler method)

 	(cerberus.errors.ErrorTree method)

 	(cerberus.schema.Registry method)

 	
 	all() (cerberus.schema.Registry method)

 	allow_unknown (cerberus.Validator property)

B

 	
 	BaseErrorHandler (class in cerberus.errors)

 	
 	BasicErrorHandler (class in cerberus.errors)

C

 	
 	
 cerberus.utils

 	module

 	child_errors (cerberus.errors.ValidationError property)

 	
 	clear() (cerberus.schema.Registry method)

 	clear_caches() (cerberus.Validator class method)

 	code (cerberus.errors.ValidationError attribute)

 	constraint (cerberus.errors.ValidationError attribute)

D

 	
 	definitions_errors (cerberus.errors.ValidationError property)

 	document (cerberus.Validator attribute)

 	document_error_tree (cerberus.Validator attribute)

 	
 	document_path (cerberus.errors.ValidationError attribute)

 	(cerberus.Validator attribute)

 	DocumentError

 	DocumentErrorTree (class in cerberus.errors)

E

 	
 	emit() (cerberus.errors.BaseErrorHandler method)

 	end() (cerberus.errors.BaseErrorHandler method)

 	error_handler (cerberus.Validator attribute)

 	ErrorDefinition (class in cerberus.errors)

 	ErrorList (class in cerberus.errors)

 	
 	errors (cerberus.Validator property)

 	ErrorTree (class in cerberus.errors)

 	excluded_types (cerberus.utils.TypeDefinition attribute)

 	extend() (cerberus.errors.BaseErrorHandler method)

 	(cerberus.schema.Registry method)

F

 	
 	fetch_errors_from() (cerberus.errors.ErrorTree method)

 	
 	fetch_node_from() (cerberus.errors.ErrorTree method)

 	field (cerberus.errors.ValidationError property)

G

 	
 	get() (cerberus.schema.Registry method)

I

 	
 	ignore_none_values (cerberus.Validator property)

 	included_types (cerberus.utils.TypeDefinition attribute)

 	info (cerberus.errors.ValidationError attribute)

 	
 	is_child (cerberus.Validator property)

 	is_group_error (cerberus.errors.ValidationError property)

 	is_logic_error (cerberus.errors.ValidationError property)

 	is_normalization_error (cerberus.errors.ValidationError property)

M

 	
 	mandatory_validations (cerberus.Validator attribute)

 	mapping_to_frozenset() (in module cerberus.utils)

 	
 	
 module

 	cerberus.utils

N

 	
 	name (cerberus.utils.TypeDefinition attribute)

 	
 	normalized() (cerberus.Validator method)

P

 	
 	priority_validations (cerberus.Validator attribute)

 	
 	purge_unknown (cerberus.Validator property)

R

 	
 	readonly_classproperty (class in cerberus.utils)

 	recent_error (cerberus.Validator attribute)

 	Registry (class in cerberus.schema)

 	remove() (cerberus.schema.Registry method)

 	require_all (cerberus.Validator property)

 	
 	root_allow_unknown (cerberus.Validator property)

 	root_document (cerberus.Validator property)

 	root_require_all (cerberus.Validator property)

 	root_schema (cerberus.Validator property)

 	rule (cerberus.errors.ValidationError attribute)

 	rules_set_registry (cerberus.Validator property)

S

 	
 	schema (cerberus.Validator property)

 	schema_error_tree (cerberus.Validator attribute)

 	schema_path (cerberus.errors.ValidationError attribute)

 	(cerberus.Validator attribute)

 	
 	schema_registry (cerberus.Validator property)

 	SchemaError

 	SchemaErrorTree (class in cerberus.errors)

 	start() (cerberus.errors.BaseErrorHandler method)

T

 	
 	TypeDefinition (class in cerberus)

 	(class in cerberus.utils)

 	
 	types_mapping (cerberus.Validator attribute)

V

 	
 	validate() (cerberus.Validator method)

 	validated() (cerberus.Validator method)

 	ValidationError (class in cerberus.errors)

 	
 	Validator (class in cerberus)

 	validator_factory() (in module cerberus.utils)

 	value (cerberus.errors.ValidationError attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to Cerberus

 		
 Installation

 		
 Stable Version

 		
 Development Version

 		
 Usage

 		
 Basic Usage

 		
 Allowing the Unknown

 		
 Requiring all

 		
 Fetching Processed Documents

 		
 validated Method

 		
 normalized Method

 		
 Warnings

 		
 Validation Schemas

 		
 Registries

 		
 Validation

 		
 Serialization

 		
 Validation Rules

 		
 allow_unknown

 		
 allowed

 		
 allof

 		
 anyof

 		
 check_with

 		
 contains

 		
 dependencies

 		
 empty

 		
 excludes

 		
 forbidden

 		
 items

 		
 keysrules

 		
 meta

 		
 min, max

 		
 minlength, maxlength

 		
 noneof

 		
 nullable

 		
 *of-rules

 		
 *of-rules typesaver

 		
 oneof

 		
 readonly

 		
 regex

 		
 require_all

 		
 required

 		
 schema (dict)

 		
 schema (list)

 		
 type

 		
 valuesrules

 		
 Normalization Rules

 		
 Renaming Of Fields

 		
 Purging Unknown Fields

 		
 Default Values

 		
 Value Coercion

 		
 Errors & Error Handling

 		
 Error Handlers

 		
 Python interfaces

 		
 Examples

 		
 Extending

 		
 Custom Rules

 		
 Custom Data Types

 		
 Methods that can be referenced by the check_with rule

 		
 Custom Coercers

 		
 Custom Default Setters

 		
 Limitations

 		
 Attaching Configuration Data And Instantiating Custom Validators

 		
 Relevant Validator-attributes

 		
 Validator.document

 		
 Validator.schema

 		
 Validator._error

 		
 Validator._get_child_validator

 		
 Validator.root_document, .root_schema, .root_allow_unknown & .root_require_all

 		
 Validator.document_path & Validator.schema_path

 		
 Validator.recent_error

 		
 Validator.mandatory_validations, Validator.priority_validations & Validator._remaining_rules

 		
 Contributing

 		
 Making Changes

 		
 Submitting Changes

 		
 Running the Tests

 		
 Testing with other Python versions

 		
 Running the benchmarks

 		
 Building the HTML-documentation

 		
 Funding

 		
 Support Cerberus development

 		
 API

 		
 Validator Class

 		
 Validator

 		
 Rules Set & Schema Registry

 		
 Registry

 		
 Type Definitions

 		
 TypeDefinition

 		
 Error Handlers

 		
 BaseErrorHandler

 		
 BasicErrorHandler

 		
 Python Error Representations

 		
 ErrorDefinition

 		
 ValidationError

 		
 Error Codes

 		
 Error Containers

 		
 Exceptions

 		
 SchemaError

 		
 DocumentError

 		
 Utilities

 		
 TypeDefinition

 		
 mapping_to_frozenset()

 		
 readonly_classproperty

 		
 validator_factory()

 		
 Schema Validation Schema

 		
 FAQ

 		
 Can I use Cerberus to validate objects?

 		
 Are Cerberus validators thread-safe, can they be used in different threads?

 		
 External resources

 		
 Community forums

 		
 7 Best Python Libraries For Validating Data (February 2018)

 		
 Nicola Iarocci: Cerberus, or Data Validation for Humans (November 2017)

 		
 Henry Ölsner: Validate JSON data using cerberus (March 2016)

 		
 Cerberus Changelog

 		
 Version 1.3.5

 		
 New

 		
 Fixed

 		
 Improved

 		
 Version 1.3.4

 		
 Fixed

 		
 Version 1.3.3

 		
 New

 		
 Fixed

 		
 Version 1.3.2

 		
 New

 		
 Fixed

 		
 Improved

 		
 Version 1.3.1

 		
 Fixed

 		
 Improved

 		
 Version 1.3

 		
 New

 		
 Fixed

 		
 Improved

 		
 Docs

 		
 Version 1.2

 		
 Version 1.1

 		
 Version 1.0.1

 		
 Version 1.0

 		
 Breaking Changes

 		
 Version 0.9.2

 		
 Version 0.9.1

 		
 Version 0.9

 		
 Version 0.8.1

 		
 Version 0.8

 		
 Version 0.7.2

 		
 Version 0.7.1

 		
 Version 0.7

 		
 Version 0.6

 		
 Version 0.5

 		
 Version 0.4.0

 		
 Version 0.3.0

 		
 Version 0.2.0

 		
 Version 0.1.0

 		
 Version 0.0.3

 		
 Version 0.0.2

 		
 Version 0.0.1

 		
 Upgrading to Cerberus 1.0

 		
 Major Additions

 		
 Error Handling

 		
 Deprecations

 		
 Validator class

 		
 Rules

 		
 Custom validators

 		
 Authors

 		
 Core maintainers

 		
 Contributors

 		
 Contact

 		
 Blog

 		
 Twitter

 		
 Mailing List

 		
 Issues tracker

 		
 GitHub repository

 		
 License

_static/file.png

_static/minus.png

_static/cerberus.png

_static/plus.png

